An extended cell transmission model based on digraph for urban traffic road network

Author(s):  
Xingguang Han ◽  
Yangzhou Chen ◽  
Jianjun Shi ◽  
Zhonghe He
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hongzhao Dong ◽  
Shuai Ma ◽  
Mingfei Guo ◽  
Dongxu Liu

To analyze the spreading regularity of the initial traffic congestion, the improved cell transmission model (CTM) is proposed to describe the evolution mechanism of traffic congestion in regional road grid. Ordinary cells and oriented cells are applied to render the crowd roads and their adjacent roads. Therefore the traffic flow could be simulated by these cells. Resorting to the proposed model, the duration of the initial traffic congestion could be predicted and the subsequent secondary congestion could be located. Accordingly, the spatial diffusion of traffic congestion could be estimated. At last, taking a road network region of Hangzhou city as an example, the simulation experiment is implemented to verify the proposed method by PARAMICS software. The result shows that the method could predict the duration of the initial congestion and estimate its spatial diffusion accurately.


Author(s):  
Zeyu Shi ◽  
Yangzhou Chen ◽  
Jingyuan Zhan ◽  
Xiangyu Guo ◽  
Shuke An

To describe the dynamics of traffic flow in the urban link accurately, the waves which generate at intersections are adopted as the influencing factors of traffic flow. Based on the urban traffic waves, a wave-oriented variable cell transmission model (WVCTM) is proposed to illustrate the urban traffic flow. In this model, the average density and length are the state variables. The cells are divided by traffic waves. The upstream cell is the influence area of the waves at the upstream intersection, the downstream cell is the influence area of the waves at the downstream intersection, and the rest is the mediate cell. Consistent with the fundamental diagram and the cell division, the traffic states of urban links are divided into six modes. The variation of modes is explained by hybrid automata. Finally, an experiment is designed to verify the feasibility of WVCTM. The data in the experiment come from the actual scene. Compared with the cell transmission model (CTM) and variable-length CTM (VCTM), WVCTM possesses the valuable performance to predict the traffic states. Likewise, it is rational that WVCTM can correctly illustrate the urban traffic flow.


2008 ◽  
Vol 11 (1) ◽  
pp. 43-64 ◽  
Author(s):  
Jiancheng Long ◽  
Ziyou Gao ◽  
Xiaomei Zhao ◽  
Aiping Lian ◽  
Penina Orenstein

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yu Sun ◽  
Binglei Xie ◽  
Shan Wang ◽  
Dazhuang Wu

The road network maintaining stability is critical for guaranteeing urban traffic function. Therefore, the vulnerable links need to be identified accurately. Previous vulnerability research under static condition compared the operating states of the old equilibrium before the event and the new equilibrium after the event to assess vulnerability ignoring the dynamic variation process. Does road network vulnerability change over time? This paper combines the vulnerability assessment with the traffic flow evolution process, exploring the road network vulnerability evaluation from the perspective of time dimension. More accurate identification and evaluation of vulnerable nodes and links can help to strengthen the ability of road network resisting disturbances. A modified dynamic traffic assignment (DTA) model is established for dynamic path selection (reselect the shortest path at the end of each link) based on the dynamic user optimal (DUO) principle. A modified cell transmission model is established to simulate the traffic flow evolution processes. The cumulative and time-varying index of vulnerability assessment is established from the viewpoint of traveler’s time loss. Then the road network vulnerability assessment combined the traffic flow model with the vulnerability index. The road network vulnerability assessment of Bao’an Central District of Shenzhen, China, reveals that road network vulnerability does contain a dynamic process, and vulnerable links in each phase can be exactly identified by the model. Results showed that the road network would have a large vulnerability during the disordered phase when the main road fails. Therefore, prioritizing the smooth flow of main roads can weaken the impact of road network vulnerability exposure.


Sign in / Sign up

Export Citation Format

Share Document