Fast Hidden Markov Model Map-Matching for Sparse and Noisy Trajectories

Author(s):  
Hannes Koller ◽  
Peter Widhalm ◽  
Melitta Dragaschnig ◽  
Anita Graser
2021 ◽  
pp. 1-17
Author(s):  
Haiyan Zhang ◽  
Yonglong Luo ◽  
Qingying Yu ◽  
Xiaoyao Zheng ◽  
Xuejing Li

An accurate map matching is an essential but difficult step in mapping raw float car trajectories onto a digital road network. This task is challenging because of the unavoidable positioning errors of GPS devices and the complexity of the road network structure. Aiming to address these problems, in this study, we focus on three improvements over the existing hidden Markov model: (i) The direction feature between the current and historical points is used for calculating the observation probability; (ii) With regard to the reachable cost between the current road section and the destination, we overcome the shortcoming of feature rarefaction when calculating the transition probability with low sampling rates; (iii) The directional similarity shows a good performance in complex intersection environments. The experimental results verify that the proposed algorithm can reduce the error rate in intersection matching and is suitable for GPS devices with low sampling rates.


2021 ◽  
Vol 13 (22) ◽  
pp. 12820
Author(s):  
Zhengang Xiong ◽  
Bin Li ◽  
Dongmei Liu

In the field of map matching, algorithms using topological relationships of road networks along with other data are normally suitable for high frequency trajectory data. However, for low frequency trajectory data, the above methods may cause problems of low matching accuracy. In addition, most past studies only use information from the road network and trajectory, without considering the traveler’s path choice preferences. In order to address the above-mentioned issue, we propose a new map matching method that combines the widely used Hidden Markov Model (HMM) with the path choice preference of decision makers. When calculating transition probability in the HMM, in addition to shortest paths and road network topology relationships, the choice preferences of travelers are also taken into account. The proposed algorithm is tested using sparse and noisy trajectory data with four different sampling intervals, while compared the results with the two underlying algorithms. The results show that our algorithm can improve the matching accuracy, especially for higher frequency locating trajectory. Importantly, the method takes into account the route choice preferences while correcting deviating trajectory points to the corresponding road segments, making the assumptions more reasonable. The case-study is in the city of Beijing, China.


2018 ◽  
Vol 12 (10) ◽  
pp. 1433-1441 ◽  
Author(s):  
Chengbo Song ◽  
Xuefeng Yan ◽  
Nkyi Stephen ◽  
Arif Ali Khan

Sign in / Sign up

Export Citation Format

Share Document