An Analytical Model to Evaluate Traffic Impacts of On-Demand Ride Pooling

Author(s):  
Aledia Bilali ◽  
Muhammad Azmat Ali Rathore ◽  
Ulrich Fastenrath ◽  
Klaus Bogenberger
Author(s):  
Aledia Bilali ◽  
Ulrich Fastenrath ◽  
Klaus Bogenberger

Ride pooling services are considered as a customer-centric mode of transportation, but, at the same time, an environmentally friendly one, because of the expected positive impacts on traffic congestion. This paper presents an analytical model that can estimate the traffic impacts of ride pooling on a city by using a previously developed shareability model, which captures the percentage of shared trips in an area, and the existence of a macroscopic fundamental diagram for the network of consideration. Moreover, the analytical model presented also investigates the impact that improving the average velocity of a city has on further increasing the percentage of shared trips in an operation area. The model is validated by means of microscopic traffic simulations for a ride pooling service operating in the city of Munich, Germany, where private vehicle trips are substituted with pooled vehicle trips for different penetration rates of the service. The results show that the average velocity in the city can be increased by up to 20% for the scenario when all private vehicle trips are substituted with pooled vehicle trips; however, the improvement is lower for smaller penetration rates of ride pooling. The operators and cities can use this study to quickly estimate the traffic impacts of introducing a ride pooling service in a certain area and for a certain set of service quality parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Alfio Lombardo ◽  
Vincenzo Riccobene ◽  
Giovanni Schembra

Today the reduction of energy consumption in telecommunications networks is one of the main goals to be pursued by manufacturers and researchers. In this context, the paper focuses on routers that achieve energy saving by applying the frequency scaling approach. The target is to propose an analytical model to support designers in choosing the main configuration parameters of the Router Governor in order to meet Quality of Service (QoS) requirements while maximizing energy saving gain. More specifically, the model is used to evaluate the input traffic impacts on the choice of the active router clock frequencies and on the overall green router performance. A case study based on the open NetFPGA reference router is considered to show how the proposed model can be easily applied to a real case scenario.


2020 ◽  
Vol 10 (6) ◽  
pp. 1984
Author(s):  
Omran Ayoub ◽  
Davide Andreoletti ◽  
Francesco Musumeci ◽  
Massimo Tornatore ◽  
Achille Pattavina

Network operators must continuously explore new network architectures to satisfy increasing traffic demand due to bandwidth-hungry services, such as video-on-demand (VoD). A promising solution which enables offloading traffic consists of terminating VoD requests locally through deploying caches at the network edge. However, deciding the number of caches to deploy, their locations in the network and their dimensions in terms of storage capacity is not trivial and must be jointly optimized, to reduce costs and utilize network resources efficiently. In this paper, we aim to find the optimal deployment of caches in a hierarchical metro network, which minimizes the overall network resource occupation for VoD services, in terms of number of caches deployed across the various network levels, their locations and their dimensions (i.e., storage capacity), under limited storage capacity. We first propose an analytical model which serves as a tool to find the optimal deployment as a function of various parameters, such as popularity distribution and location of metro cache. Then, we present a discrete-event simulator for dynamic VoD provisioning to verify the correctness of the analytical model and to measure the performance of different cache deployment strategies in terms of overall network resource occupation. We prove that, to minimize resource occupation given a fixed budget in terms of storage capacity, storage capacity must be distributed among caches at different layers of the metro network. Moreover, we provide guidelines for the optimal cache deployment strategy when the available storage capacity is limited. We further show how the optimal deployment of caches across the various metro network levels varies depending on the popularity distribution, the metro network topology and the amount of storage capacity available (i.e., the budget invested in terms of storage capacity).


2008 ◽  
Author(s):  
Jamie Chamberlin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document