An information theoretic approach for determining the minimum number of sensors in a wireless sensor network

Author(s):  
Bryan Larish ◽  
George Riley
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tapan Kumar Jain ◽  
Davinder Singh Saini ◽  
Sunil Vidya Bhooshan

The research work proposes a cluster head selection algorithm for a wireless sensor network. A node can be a cluster head if it is connected to at least one unique neighbor node where the unique neighbor is the one that is not connected to any other node. If there is no connected unique node then the CH is selected on the basis of residual energy and the number of neighbor nodes. With the increase in number of clusters, the processing energy of the network increases; hence, this algorithm proposes minimum number of clusters which further leads to increased network lifetime. The major novel contribution of the proposed work is an algorithm that ensures a completely connected network with minimum number of isolated nodes. An isolated node will remain only if it is not within the transmission range of any other node. With the maximum connectivity, the coverage of the network is automatically maximized. The superiority of the proposed design is verified by simulation results done in MATLAB, where it clearly depicts that the total numbers of rounds before the network dies out are maximum compared to other existing protocols.


2021 ◽  
Author(s):  
Sathees Lingam Paulswamy ◽  
A.Andrew Roobert ◽  
K. Hariharan

Abstract Coverage of the bounded region gets importance in Wireless Sensor Network (WSN). Area coverage is based on effective surface coverage with a minimum number of sensor nodes. Most of the researchers contemplate the coverage region of interest as a square and manifest the radio ranges as a circle. The area of a circle is much higher than the area of a square because of the perimeter. To utilize the advantage of the circle, the coverage region of interest is presumed as a circle for sensor node deployment. This paper proposes a novel coverage improved disc shape deployment strategy. Comparative analysis has been observed between circle and square regions of interest based on the cumulative number of sensor nodes required to cover the entire region. A new strategy named as disc shape deployment strategy is also proposed. Traditional hexagon and strip-based deployment strategies are compared with the disc shape deployment strategy. The simulation result shows that the circle shape coverage region of interest extremely reduces the required number of sensor nodes. The proposed deployment strategy provides desirable coverage, and it requires few more sensor nodes than hexagon shape deployment strategy.


Algorithms ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 80 ◽  
Author(s):  
Yasser El Khamlichi ◽  
Abderrahim Tahiri ◽  
Anouar Abtoy ◽  
Inmaculada Medina-Bulo ◽  
Francisco Palomo-Lozano

Sign in / Sign up

Export Citation Format

Share Document