secure localization
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3074
Author(s):  
Deepak Prashar ◽  
Mamoon Rashid ◽  
Shams Tabrez Siddiqui ◽  
Dilip Kumar ◽  
Amandeep Nagpal ◽  
...  

Localization and security are among the most dominant tasks of wireless sensor networks (WSN). For applications containing sensitive information on the location parameters of the event, secure localization is mandatory and must not be compromised at any cost. The main task, as if any node is malicious, is to authenticate nodes that are involved in the localization process. In this paper, we propose a secure hop-based algorithm that provides a better localization accuracy. In addition, to maintain the security of the localization process, the digital signature approach is used. Moreover, the impact of malicious nodes on the proposed scheme has also been observed. The proposed approach is also contrasted with the basic DV-Hop and improved DV-Hop based on error correction. From the simulation outcomes, we infer that this secure digital-signature-based localization strategy is quite robust against any node compromise attacks, thereby boosting its precision. Comparisons between the proposed algorithm and the state of the art were made on the grounds of different parameters such as the node quantity, ratio of anchor nodes, and range value towards the localization error.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6814
Author(s):  
Roberto Saia ◽  
Alessandro Sebastian Podda ◽  
Livio Pompianu ◽  
Diego Reforgiato Reforgiato Recupero ◽  
Gianni Fenu

In recent decades, modern societies are experiencing an increasing adoption of interconnected smart devices. This revolution involves not only canonical devices such as smartphones and tablets, but also simple objects like light bulbs. Named the Internet of Things (IoT), this ever-growing scenario offers enormous opportunities in many areas of modern society, especially if joined by other emerging technologies such as, for example, the blockchain. Indeed, the latter allows users to certify transactions publicly, without relying on central authorities or intermediaries. This work aims to exploit the scenario above by proposing a novel blockchain-based distributed paradigm to secure localization services, here named the Internet of Entities (IoE). It represents a mechanism for the reliable localization of people and things, and it exploits the increasing number of existing wireless devices and blockchain-based distributed ledger technologies. Moreover, unlike most of the canonical localization approaches, it is strongly oriented towards the protection of the users’ privacy. Finally, its implementation requires minimal efforts since it employs the existing infrastructures and devices, thus giving life to a new and wide data environment, exploitable in many domains, such as e-health, smart cities, and smart mobility.


Author(s):  
Rekha Goyat ◽  
Gulshan Kumar ◽  
Mamoun Alazab ◽  
Rahul Saha ◽  
Reji Thomas ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-26
Author(s):  
Sudip Misra ◽  
Tamoghna Ojha ◽  
Madhusoodhanan P

Node localization is a fundamental requirement in underwater sensor networks (UWSNs) due to the ineptness of GPS and other terrestrial localization techniques in the underwater environment. In any UWSN monitoring application, the sensed information produces a better result when it is tagged with location information. However, the deployed nodes in UWSNs are vulnerable to many attacks, and hence, can be compromised by interested parties to generate incorrect location information. Consequently, using the existing localization schemes, the deployed nodes are unable to autonomously estimate the precise location information. In this regard, similar existing schemes for terrestrial wireless sensor networks are not applicable to UWSNs due to its inherent mobility, limited bandwidth availability, strict energy constraints, and high bit-error rates. In this article, we propose SecRET , a <underline>Sec</underline>ure <underline>R</underline>ange-based localization scheme empowered by <underline>E</underline>vidence <underline>T</underline>heory for UWSNs. With trust-based computations, the proposed scheme, SecRET , enables the unlocalized nodes to select the most reliable set of anchors with low resource consumption. Thus, the proposed scheme is adaptive to many attacks in UWSN environment. NS-3 based performance evaluation indicates that SecRET maintains energy-efficiency of the deployed nodes while ensuring efficient and secure localization, despite the presence of compromised nodes under various attacks.


2021 ◽  
Vol 67 (3) ◽  
pp. 4005-4018
Author(s):  
V. Manikandan ◽  
M. Sivaram ◽  
Amin Salih Mohammed ◽  
V. Porkodi ◽  
K. Shankar

Sign in / Sign up

Export Citation Format

Share Document