Second-Order Asymptotically Optimal Outlying Sequence Detection with Reject Option

Author(s):  
Lin Zhou ◽  
Alfred Hero ◽  
Yun Wei
Biometrika ◽  
1990 ◽  
Vol 77 (3) ◽  
pp. 521-528 ◽  
Author(s):  
PETER HALL ◽  
J W KAY ◽  
D M TITTERINGTON

Abstract We define and compute asymptotically optimal difference sequences for estimating error variance in homoscedastic nonparametric regression. Our optimal difference sequences do not depend on unknowns, such as the mean function, and provide substantial improvements over the suboptimal sequences commonly used in practice. For example, in the case of normal data the usual variance estimator based on symmetric second-order differences is only 64% efficient relative to the estimator based on optimal second-order differences. The efficiency of an optimal mth-order difference estimator relative to the error sample variance is 2m/(2m + 1). Again this is for normal data, and increases as the tails of the error distribution become heavier.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document