Stochastic driver speed control behavior modeling in urban intersections using risk potential-based motion planning framework

Author(s):  
Yasuhiro Akagi ◽  
Pongsathorn Raksincharoensak
2021 ◽  
Author(s):  
Haoran Song ◽  
Anastasiia Varava ◽  
Oleksandr Kravchenko ◽  
Danica Kragic ◽  
Michael Yu Wang ◽  
...  

2015 ◽  
Vol 59 ◽  
pp. 23-38 ◽  
Author(s):  
Yu Yan ◽  
Emilie Poirson ◽  
Fouad Bennis

2020 ◽  
Vol 10 (24) ◽  
pp. 9137
Author(s):  
Hongwen Zhang ◽  
Zhanxia Zhu

Motion planning is one of the most important technologies for free-floating space robots (FFSRs) to increase operation safety and autonomy in orbit. As a nonholonomic system, a first-order differential relationship exists between the joint angle and the base attitude of the space robot, which makes it pretty challenging to implement the relevant motion planning. Meanwhile, the existing planning framework must solve inverse kinematics for goal configuration and has the limitation that the goal configuration and the initial configuration may not be in the same connected domain. Thus, faced with these questions, this paper investigates a novel motion planning algorithm based on rapidly-exploring random trees (RRTs) for an FFSR from an initial configuration to a goal end-effector (EE) pose. In a motion planning algorithm designed to deal with differential constraints and restrict base attitude disturbance, two control-based local planners are proposed, respectively, for random configuration guiding growth and goal EE pose-guiding growth of the tree. The former can ensure the effective exploration of the configuration space, and the latter can reduce the possibility of occurrence of singularity while ensuring the fast convergence of the algorithm and no violation of the attitude constraints. Compared with the existing works, it does not require the inverse kinematics to be solved while the planning task is completed and the attitude constraint is preserved. The simulation results verify the effectiveness of the algorithm.


2021 ◽  
Author(s):  
Tianyang Pan ◽  
Andrew M. Wells ◽  
Rahul Shome ◽  
Lydia E. Kavraki

2021 ◽  
Author(s):  
Xiaolin Tang ◽  
Guichuan Zhong ◽  
Kai Yang ◽  
Jiahang Wu ◽  
Zichun Wei

Author(s):  
Pal Liljeback ◽  
Kristin Y. Pettersen ◽  
Oyvind Stavdahl ◽  
Jan Tommy Gravdahl

2011 ◽  
Vol 66 (4) ◽  
pp. 477-494 ◽  
Author(s):  
Andrew J. Berry ◽  
Jeremy Howitt ◽  
Da-Wei Gu ◽  
Ian Postlethwaite

10.29007/1p2d ◽  
2019 ◽  
Author(s):  
Moritz Klischat ◽  
Octav Dragoi ◽  
Mostafa Eissa ◽  
Matthias Althoff

Testing motion planning algorithms for automated vehicles in realistic simulation environments accelerates their development compared to performing real-world test drives only. In this work, we combine the open-source microscopic traffic simulator SUMO with our software framework CommonRoad to test motion planning of automated vehicles. Since SUMO is not originally designed for simulating automated vehicles, we present an inter- face for exchanging the trajectories of vehicles controlled by a motion planner and the trajectories of other traffic participants between SUMO and CommonRoad. Furthermore, we ensure realistic dynamic behavior of other traffic participants by extending the lane changing model in SUMO to implement more realistic lateral dynamics. We demonstrate our SUMO interface with a highway scenario.


Sign in / Sign up

Export Citation Format

Share Document