scholarly journals Coupling SUMO with a Motion Planning Framework for Automated Vehicles

10.29007/1p2d ◽  
2019 ◽  
Author(s):  
Moritz Klischat ◽  
Octav Dragoi ◽  
Mostafa Eissa ◽  
Matthias Althoff

Testing motion planning algorithms for automated vehicles in realistic simulation environments accelerates their development compared to performing real-world test drives only. In this work, we combine the open-source microscopic traffic simulator SUMO with our software framework CommonRoad to test motion planning of automated vehicles. Since SUMO is not originally designed for simulating automated vehicles, we present an inter- face for exchanging the trajectories of vehicles controlled by a motion planner and the trajectories of other traffic participants between SUMO and CommonRoad. Furthermore, we ensure realistic dynamic behavior of other traffic participants by extending the lane changing model in SUMO to implement more realistic lateral dynamics. We demonstrate our SUMO interface with a highway scenario.

Author(s):  
Shunchao Wang ◽  
Zhibin Li ◽  
Bingtong Wang ◽  
Jingfeng Ma ◽  
Jingcai Yu

This study proposes a novel collision avoidance and motion planning framework for connected and automated vehicles based on an improved velocity obstacle (VO) method. The controller framework consists of two parts, that is, collision avoidance method and motion planning algorithm. The VO algorithm is introduced to deduce the velocity conditions of a vehicle collision. A collision risk potential field (CRPF) is constructed to modify the collision area calculated by the VO algorithm. A vehicle dynamic model is presented to predict vehicle moving states and trajectories. A model predictive control (MPC)-based motion tracking controller is employed to plan collision-avoidance path according to the collision-free principles deduced by the modified VO method. Five simulation scenarios are designed and conducted to demonstrate the control maneuver of the proposed controller framework. The results show that the constructed CRPF can accurately represent the collision risk distribution of the vehicles with different attributes and motion states. The proposed framework can effectively handle the maneuver of obstacle avoidance, lane change, and emergency response. The controller framework also presents good performance to avoid crashes under different levels of collision risk strength.


2021 ◽  
Vol 70 ◽  
pp. 1517-1555
Author(s):  
Anirban Santara ◽  
Sohan Rudra ◽  
Sree Aditya Buridi ◽  
Meha Kaushik ◽  
Abhishek Naik ◽  
...  

Autonomous driving has emerged as one of the most active areas of research as it has the promise of making transportation safer and more efficient than ever before. Most real-world autonomous driving pipelines perform perception, motion planning and action in a loop. In this work we present MADRaS, an open-source multi-agent driving simulator for use in the design and evaluation of motion planning algorithms for autonomous driving. Given a start and a goal state, the task of motion planning is to solve for a sequence of position, orientation and speed values in order to navigate between the states while adhering to safety constraints. These constraints often involve the behaviors of other agents in the environment. MADRaS provides a platform for constructing a wide variety of highway and track driving scenarios where multiple driving agents can be trained for motion planning tasks using reinforcement learning and other machine learning algorithms. MADRaS is built on TORCS, an open-source car-racing simulator. TORCS offers a variety of cars with different dynamic properties and driving tracks with different geometries and surface.  MADRaS inherits these functionalities from TORCS and introduces support for multi-agent training, inter-vehicular communication, noisy observations, stochastic actions, and custom traffic cars whose behaviors can be programmed to simulate challenging traffic conditions encountered in the real world. MADRaS can be used to create driving tasks whose complexities can be tuned along eight axes in well-defined steps. This makes it particularly suited for curriculum and continual learning. MADRaS is lightweight and it provides a convenient OpenAI Gym interface for independent control of each car. Apart from the primitive steering-acceleration-brake control mode of TORCS, MADRaS offers a hierarchical track-position – speed control mode that can potentially be used to achieve better generalization. MADRaS uses a UDP based client server model where the simulation engine is the server and each client is a driving agent. MADRaS uses multiprocessing to run each agent as a parallel process for efficiency and integrates well with popular reinforcement learning libraries like RLLib. We show experiments on single and multi-agent reinforcement learning with and without curriculum


2018 ◽  
Vol 25 (3) ◽  
pp. 61-70 ◽  
Author(s):  
Neil T. Dantam ◽  
Swarat Chaudhuri ◽  
Lydia E. Kavraki

2021 ◽  
Author(s):  
Haoran Song ◽  
Anastasiia Varava ◽  
Oleksandr Kravchenko ◽  
Danica Kragic ◽  
Michael Yu Wang ◽  
...  

Author(s):  
Austin Rovinski ◽  
Tutu Ajayi ◽  
Minsoo Kim ◽  
Guanru Wang ◽  
Mehdi Saligane
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Juanan Pereira

(1) Background: final year students of computer science engineering degrees must carry out a final degree project (FDP) in order to graduate. Students’ contributions to improve open source software (OSS) through FDPs can offer multiple benefits and challenges, both for the students, the instructors and for the project itself. This work reports on a practical experience developed by four students contributing to mature OSS projects during their FDPs, detailing how they addressed the multiple challenges involved, both from the students and teachers perspective. (2) Methods: we followed the work of four students contributing to two established OSS projects for two academic years and analyzed their work on GitHub and their responses to a survey. (3) Results: we obtained a set of specific recommendations for future practitioners and detailed a list of benefits achieved by steering FDP towards OSS contributions, for students, teachers and the OSS projects. (4) Conclusion: we find out that FDPs oriented towards enhancing OSS projects can introduce students into real-world, practical examples of software engineering principles, give them a boost in their confidence about their technical and communication skills and help them build a portfolio of contributions to daily used worldwide open source applications.


Sign in / Sign up

Export Citation Format

Share Document