Outage analysis of hybrid FSO/RF systems based on finite-state Markov chain modeling

Author(s):  
Hossein Kazemi ◽  
Murat Uysal ◽  
Farid Touati
2003 ◽  
Vol 17 (4) ◽  
pp. 487-501 ◽  
Author(s):  
Yang Woo Shin ◽  
Bong Dae Choi

We consider a single-server queue with exponential service time and two types of arrivals: positive and negative. Positive customers are regular ones who form a queue and a negative arrival has the effect of removing a positive customer in the system. In many applications, it might be more appropriate to assume the dependence between positive arrival and negative arrival. In order to reflect the dependence, we assume that the positive arrivals and negative arrivals are governed by a finite-state Markov chain with two absorbing states, say 0 and 0′. The epoch of absorption to the states 0 and 0′ corresponds to an arrival of positive and negative customers, respectively. The Markov chain is then instantly restarted in a transient state, where the selection of the new state is allowed to depend on the state from which absorption occurred.The Laplace–Stieltjes transforms (LSTs) of the sojourn time distribution of a customer, jointly with the probability that the customer completes his service without being removed, are derived under the combinations of service disciplines FCFS and LCFS and the removal strategies RCE and RCH. The service distribution of phase type is also considered.


2014 ◽  
Vol 51 (4) ◽  
pp. 1114-1132 ◽  
Author(s):  
Bernhard C. Geiger ◽  
Christoph Temmel

A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain on a finite state space by the random growth rate of the cardinality of the realisable preimage of a finite-length trajectory of the lumped chain and by the information needed to reconstruct original trajectories from their lumped images. Both are purely combinatorial criteria, depending only on the transition graph of the Markov chain and the lumping function. A lumping is strongly k-lumpable, if and only if the lumped process is a kth-order Markov chain for each starting distribution of the original Markov chain. We characterise strong k-lumpability via tightness of stationary entropic bounds. In the sparse setting, we give sufficient conditions on the lumping to both preserve the entropy rate and be strongly k-lumpable.


2005 ◽  
Vol 37 (4) ◽  
pp. 1015-1034 ◽  
Author(s):  
Saul D. Jacka ◽  
Zorana Lazic ◽  
Jon Warren

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let v be a map v: E→ℝ\{0}, and let (φt)t≥0 be an additive functional defined by φt=∫0tv(Xs)d s. We consider the case in which the process (φt)t≥0 is oscillating and that in which (φt)t≥0 has a negative drift. In each of these cases, we condition the process (Xt,φt)t≥0 on the event that (φt)t≥0 is nonnegative until time T and prove weak convergence of the conditioned process as T→∞.


ETRI Journal ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 718-728 ◽  
Author(s):  
Ahmed Abdul Salam ◽  
Ray Sheriff ◽  
Saleh Al-Araji ◽  
Kahtan Mezher ◽  
Qassim Nasir

Sign in / Sign up

Export Citation Format

Share Document