Compact Capacitive Compensation for Adjustable Load-Independent Output and Zero-Phase-Angle Input for High Efficiency IPT Systems

Author(s):  
Jia Hou ◽  
Qianhong Chen ◽  
Li Zhang ◽  
Ligang Xu ◽  
Siu-Chung Wong ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Qian Su ◽  
Xin Liu ◽  
Yan Li ◽  
Xiaosong Wang ◽  
Zhiqiang Wang ◽  
...  

Compensation is crucial in the inductive power transfer system to achieve load-independent constant voltage or constant current output, near-zero reactive power, higher design freedom, and zero-voltage switching of the driver circuit. This article proposes a simple, comprehensive, and innovative graphic design methodology for compensation topology to realize load-independent output at zero-phase-angle frequencies. Four types of graphical models of the loosely coupled transformer that utilize the ideal transformer and gyrator are presented. The combination of four types of models with the source-side/load-side conversion model can realize the load-independent output from the source to load. Instead of previous design methods of solving the equations derived from the circuits, the load-independent frequency, zero-phase angle (ZPA) conditions, and source-to-load voltage/current gain of the compensation topology can be intuitively obtained using the circuit model given in this paper. In addition, not limited to only research of the existing compensation topology, based on the design methodology in this paper, 12 novel compensation topologies that are free from the constraints of transformer parameters and independent of load variations are stated and verified by simulations. In addition, a novel prototype of primary-series inductor–capacitance–capacitance (S/LCC) topology is constructed to demonstrate the proposed design approach. The simulation and experimental results are consistent with the theory, indicating the correctness of the design method.


1984 ◽  
Vol 75 ◽  
pp. 147-154 ◽  
Author(s):  
Audouin Dollfus

ABSTRACTThe high magnification visual telescopic observation of Saturn’s rings exhibits divisions, gaps and bright sub-rings. B. Lyot gave a first description of these features. Later, with still more resolving telescopes, we improved the analysis of the ring features. Some gaps and concentric bright or dark sub-rings are phase angle dependent; the steep luminance peaks of their light curves around zero phase angle are volume-density dependent (opposition effect); the overall result produces changes in the shapes and intensities of these features at small phase angles, which are analysed.


1969 ◽  
Vol 157 ◽  
pp. L193 ◽  
Author(s):  
H. A. Pohn ◽  
H. W. Radin ◽  
R. L. Wildey

1998 ◽  
Vol 46 (8) ◽  
pp. 893-898 ◽  
Author(s):  
P. Gammelgaard
Keyword(s):  

2020 ◽  
Vol 35 (5) ◽  
pp. 5343-5353 ◽  
Author(s):  
Yeran Liu ◽  
Udaya Kumara Madawala ◽  
Ruikun Mai ◽  
Zhengyou He
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document