Experimental Demonstration of Photonic Millimeter-Wave System for High Capacity Point-to-Point Wireless Communications

2014 ◽  
Vol 32 (20) ◽  
pp. 3588-3594 ◽  
Author(s):  
Timothy P. McKenna ◽  
Jeffrey A. Nanzer ◽  
Thomas R. Clark
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Shaddrack Yaw Nusenu

With the massive growth of wireless data in mobile broadband communications, millimeter-wave (mm-wave) communication is an alternative enabling technique for fifth generation (5G) wireless communication systems. More importantly, mm-wave offers large frequency spectrum bands ranging from 30GHz to 300GHz that can be utilized to provide very high capacity (i.e., multigigabits per-second data rates). Moreover, because of the small wavelength at mm-wave frequencies, we can exploit large antenna elements in a small physical area, meaning beamforming schemes are feasible. Nevertheless, high directional antennas should be used due to overcoming the severe path loss and absorption in mm-wave frequencies. Further, the antennas should be steerable in angle and range directions to support point-to-point (multipoint) communications. So far, mm-wave communication has utilized phased-array antennas arrangement which is solely angle dependent. This review paper presents recent array technology, namely, frequency modulated frequency diverse array (FDA) for mm-wave communication applications with an emphasis on beamforming. In FDA, small frequency increment is added across the elements. In doing so, an array beam is generated which is angle-range-time dependent without the need of phase shifters. This feature has several promising potentials in mm-wave communications. In this review, the object is to bring to the fore this advance FDA technology to mm-wave communications community to call for more investigations. We review FDA research progress up to date and highlight the potential applications in mm-wave communications.


Author(s):  
Divya Singh ◽  
Aasheesh Shukla

Background : Millimeter wave technology is the emerging technology in wireless communication due to increased demand for data traffic and its numerous advantages however it suffers from severe attenuation. To mitigate this attenuation, phased antenna arrays are used for unidirectional power distribution. An initial access is needed to make a connection between the base station and users in millimeter wave system. The high complexity and cost can be mitigated by the use of hybrid precoding schemes. Hybrid precoding techniques are developed to reduce the complexity, power consumption and cost by using phase shifters in place of converters. The use of phase shifters also increases the spectral efficiency. Objective: Analysis of Optimum Precoding schemes in Millimeter Wave System. Method: In this paper, the suitability of existing hybrid precoding solutions are explored on the basis of the different algorithms and the architecture to increase the average achievable rate. Previous work done in hybrid precoding is also compared on the basis of the resolution of the phase shifter and digital to analog converter. Results: A comparison of the previous work is done on the basis of different parameters like the resolution of phase shifters, digital to analog converter, amount of power consumption and spectral efficiency. Table 2 shows the average achievable rate of different algorithms at SNR= 0 dB and 5 dB. Table 3 also compares the performance achieved by the hybrid precoder in the fully connected structure with two existing approaches, dynamic subarray structure with and without switch and sub connected or partially connected structure. Table 4 gives the comparative analysis of hybrid precoding with the different resolutions of the phase shifter and DAC. Conclusion: In this paper, some available literature is reviewed and summarized about hybrid precoding in millimeter wave communication. Current solutions of hybrid precoding are also reviewed and compared in terms of their efficiency, power consumption, and effectiveness. The limitations of the existing hybrid precoding algorithms are the selection of group and resolution of phase shifters. The mm wave massive MIMO is only feasible due to hybrid precoding.


2020 ◽  
pp. 203-229
Author(s):  
Nuria González‐Prelcic ◽  
Robert W. Heath ◽  
Cristian Rusu ◽  
Aldebaro Klautau

2021 ◽  
Vol 1939 (1) ◽  
pp. 012106
Author(s):  
Zhu Qinghua ◽  
Chang Ying ◽  
Shi Junfeng ◽  
Zhao Jingya ◽  
Liu Yong

2014 ◽  
Vol 52 (12) ◽  
pp. 110-121 ◽  
Author(s):  
Shu Sun ◽  
Theodore Rappaport ◽  
Robert Heath ◽  
Andrew Nix ◽  
Sundeep Rangan

Sign in / Sign up

Export Citation Format

Share Document