Sea-floor classification using multibeam echo-sounding angular backscatter data: a real-time approach employing hybrid neural network architecture

2003 ◽  
Vol 28 (1) ◽  
pp. 121-128 ◽  
Author(s):  
B. Chakraborty ◽  
V. Kodagali ◽  
J. Baracho
2020 ◽  
Vol 10 (18) ◽  
pp. 6386
Author(s):  
Xing Bai ◽  
Jun Zhou

Benefiting from the booming of deep learning, the state-of-the-art models achieved great progress. But they are huge in terms of parameters and floating point operations, which makes it hard to apply them to real-time applications. In this paper, we propose a novel deep neural network architecture, named MPDNet, for fast and efficient semantic segmentation under resource constraints. First, we use a light-weight classification model pretrained on ImageNet as the encoder. Second, we use a cost-effective upsampling datapath to restore prediction resolution and convert features for classification into features for segmentation. Finally, we propose to use a multi-path decoder to extract different types of features, which are not ideal to process inside only one convolutional neural network. The experimental results of our model outperform other models aiming at real-time semantic segmentation on Cityscapes. Based on our proposed MPDNet, we achieve 76.7% mean IoU on Cityscapes test set with only 118.84GFLOPs and achieves 37.6 Hz on 768 × 1536 images on a standard GPU.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


1999 ◽  
Vol 09 (01) ◽  
pp. 1-9
Author(s):  
MIKKO LEHTOKANGAS

A hybrid neural network architecture is investigated for modeling purposes. The proposed hybrid is based on the multilayer perceptron (MLP) network. In addition to the usual hidden layers, the first hidden layer is selected to be an adaptive reference pattern layer. Each unit in this new layer incorporates a reference pattern that is located somewhere in the space spanned by the input variables. The outputs of these units are the component wise-squared differences between the elements of a reference pattern and the inputs. The reference pattern layer has some resemblance to the hidden layer of the radial basis function (RBF) networks. Therefore the proposed design can be regarded as a sort of hybrid of MLP and RBF networks. The presented benchmark experiments show that the proposed hybrid can provide significant advantages over standard MLPs and RBFs in terms of fast and efficient learning, and compact network structure.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


Sign in / Sign up

Export Citation Format

Share Document