Optimization of Helical Capacitance Sensor for Void Fraction Measurement of Gas-Liquid Two-Phase Flow in a Small Diameter Tube

2011 ◽  
Vol 11 (10) ◽  
pp. 2189-2196 ◽  
Author(s):  
Jiamin Ye ◽  
Lihui Peng ◽  
Weirong Wang ◽  
Wenxing Zhou
Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 216
Author(s):  
Álvaro Roberto Gardenghi ◽  
Erivelto dos Santos Filho ◽  
Daniel Gregório Chagas ◽  
Guilherme Scagnolatto ◽  
Rodrigo Monteiro Oliveira ◽  
...  

Void fraction is one of the most important parameters for the modeling and characterization of two-phase flows. This manuscript presents an overview of void fraction measurement techniques, experimental databases and correlations, in the context of microchannel two-phase flow applications. Void fraction measurement techniques were reviewed and the most suitable techniques for microscale measurements were identified along its main characteristics. An updated void fraction experimental database for small channel diameter was obtained including micro and macrochannel two-phase flow data points. These data have channel diameter ranging from 0.5 to 13.84 mm, horizontal and vertical directions, and fluids such as air-water, R410a, R404a, R134a, R290, R12 and R22 for both diabatic and adiabatic conditions. New published void fraction correlations as well high cited ones were evaluated and compared to this small-diameter void fraction database in order to quantify the prediction error of them. Moreover, a new drift flux correlation for microchannels was also developed, showing that further improvement of available correlations is still possible. The new correlation was able to predict the microchannel database with mean absolute relative error of 9.8%, for 6% of relative improvement compared to the second-best ranked correlation for small diameter channels.


1993 ◽  
Vol 30 (6) ◽  
pp. 516-523 ◽  
Author(s):  
Takashi HIBIKI ◽  
Kaicbirol MISHIMA ◽  
Kenji YONEDA ◽  
Shigenori FUJINE ◽  
Keiji KANDA ◽  
...  

Author(s):  
Norihide MAENO ◽  
Wataru OKADA ◽  
Satoshi KITAKOGA ◽  
Yuki SUMI ◽  
Tetsuya SATO ◽  
...  

2018 ◽  
Vol 115 ◽  
pp. 480-486 ◽  
Author(s):  
Bin Yu ◽  
Wenxiong Zhou ◽  
Liangming Pan ◽  
Hang Liu ◽  
Quanyao Ren ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2088
Author(s):  
Wael Ahmed ◽  
Adib Fatayerji ◽  
Ahmed Elsaftawy ◽  
Marwan Hassan ◽  
David Weaver ◽  
...  

Evaluating the two-phase flow parameters across tube bundles is crucial to the analysis of vibration excitation mechanisms. These parameters include the temporal and local variation of void fraction and phase redistribution. Understanding these two-phase parameters is essential to evaluating the stability threshold of tube bundle configurations. In this work, capacitance sensor probes were designed using finite element analysis to ensure high sensor sensitivity and optimum response. A simulation-based approach was used to calibrate and increase the accuracy of the void fraction measurement. The simulation results were used to scale the normalized capacitance and minimize the sensor uncertainty to ±5%. The sensor and required conditioning circuits were fabricated and tested for measuring the instantaneous void fraction in a horizontal triangular tube bundle array under both static and dynamic two-phase flow conditions. The static calibration of the sensor was able to reduce the uncertainty to ±3% while the sensor conditioning circuit was able to capture instantaneous void fraction signals with frequencies up to 2.5 kHz.


2015 ◽  
Vol 40 (44) ◽  
pp. 15206-15212 ◽  
Author(s):  
Reza Faghihi ◽  
Mohammadreza Nematollahi ◽  
Ali Erfaninia ◽  
Mahtab Adineh

Sign in / Sign up

Export Citation Format

Share Document