absolute relative error
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 44)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Mosbah Ben Said ◽  
Ahmed Ouamane

Abstract Labyrinth weirs are commonly used to increase the capacity of existing spillways and provide more efficient spillways for new dams due to their high specific discharge capacity compared to the linear weir. In the present study, experimental and numerical investigation was conducted to improve the rectangular labyrinth weir performance. In this context, four configurations were tested to evaluate the influence of the entrance shape and alveoli width on its discharge capacity. The experimental models, three models of rectangular labyrinth weir with rounded entrance and one with flat entrance, were tested in rectangular channel conditions for inlet width to outlet width ratios (a/b) equal to 0.67, 1 and 1.5. The results indicate that the rounded entrance increases the weir efficiency by up to 5%. A ratio a/b equal to 1.5 leads to an 8 and 18% increase in the discharge capacity compared to a/b ratio equal to 1 and 0.67, respectively. In addition, a numerical simulation was conducted using the opensource CFD OpenFOAM to analyze and provide more information about the flow behavior over the tested models. A comparison between the experimental and numerical discharge coefficient was performed and good agreement was found (Mean Absolute Relative Error of 4–6%).


2021 ◽  
Author(s):  
Mohammad Al Kadem ◽  
Ali Al Ssafwany ◽  
Ahmed Abdulghani ◽  
Hussain Al Nasir

Abstract Stabilization time is an essential key for pressure measurement accuracy. Obtaining representative pressure points in build-up tests for pressure-sensitive reservoirs is driven by optimizing stabilization time. An artificial intelligence technique was used in the study for testing pressure-sensitive reservoirs using measuring gauges. The stabilization time function of reservoir characteristics is generally calculated using the diffusivity equation where rock and fluid properties are honored. The artificial neural network (ANN) technique will be used to predict the stabilization time and optimize it using readily available and known inputs or parameters. The values obtained from the formula known as the diffusion formula and the ANN technique are then compared against the actual values measured from pressure gauges in the reservoirs. The optimization of the number of datasets required to be fed to the network to allow for coverage over the whole range is essential as opposed to the clustering of the datasets. A total of about 3000 pressure derivative samples from the wells were used in the testing, training, and validation of the ANN. The datasets are optimized by dividing them into three fractional parts, and the number optimized through monitoring the ANN performance. The optimization of the stabilization time is essential and leads to the improvement of the ANN learning process. The sensitivity analysis proves that the use of the formula and ANN technique, compared to actual datasets, is better since, in the formula and ANN technique, the time was optimized with an average absolute relative error of 3.67%. The results are near the same, especially when the ANN technique undergoes testing using known and easily available parameters. Time optimization is essential since discreet points or datasets in the ANN technique and formula would not work, allowing ANN to work in situations of optimization. The study was expected to provide additional data and information, considering that stabilization time is essential in obtaining the pressure map representation. ANN is a superior technique and, through its superiority, allows for proper optimization of time as a parameter. Thus it can predict reservoir log data almost accurately. The method used in the study shows the importance of optimizing pressure stabilization time through reduction. The study results can, therefore, be applied in reservoir testing to achieve optimal results.


2021 ◽  
Vol 6 (2) ◽  
pp. 898
Author(s):  
Sunday Emmanuel Fadugba ◽  
Roseline Bosede Ogunrinde ◽  
Rowland Rotimi Ogunrinde

This paper presents the stability analysis of a proposed scheme of order five (FCM) for first order Ordinary Differential Equations (ODEs). The proposed FCM is derived by means of an interpolating function of polynomial and exponential forms. The properties of FCM were discussed extensively. The linear stability of FCM in the context of the Third Order One-Step Method (TCM) and Second Order One-Step Method (SCM) for the solution of initial value problems of first order differential equations is presented. The stability region of FCM, TCM and SCM is investigated using the Dahlquist’s test equation. The numerical results obtained via FCM are compared with TCM and SCM. Moreover, by varying the step length, the accuracy and convergence of the methods in terms of the final absolute relative error are measured. The results show that FCM converges faster and more stable than its counterparts.


Author(s):  
Mabkhout Al-Dousari ◽  
◽  
Salah Almudhhi ◽  
Ali A. Garrouch ◽  
◽  
...  

Predicting the flow zone indicator is essential for identifying the hydraulic flow units of hydrocarbon reservoirs. Delineation of hydraulic flow units is crucial for mapping petrophysical and rock mechanical properties. Precise prediction of the flow zone indicator (FZI) of carbonate rocks using well log measurements in un-cored intervals is still a daunting challenge for petrophysicists. This study presents a data mining methodology for predicting the rock FZI using NMR echo transforms, and conventional open-hole log measurements. The methodology is applied on a carbonate reservoir with extreme microstructure properties, from an oil “M” field characterized by a relatively high-permeability with a median of approximately 167 mD, and a maximum of 3480 mD. The reservoir from the M field features detritic, or vuggy structure, covering a wide range of rock fabrics varying from microcrystalline mudstones to coarse-grained grainstones. Porosity has a median of approximately 22%. Dimensional analysis and regression analysis are applied for the derivation of four transforms that appear to capture approximately 80% of the FZI variance. These four transforms are formulated using the geometric mean of the transverse NMR relaxation time (T2lm), the ratio of the free fluid index (FFI) to the bulk volume irreducible (BVI), the bulk density, the sonic compressional travel time, the true resistivity, the photo-electric absorption, and the effective porosity. Non-linear regression models have been developed for predicting the FZI using the derived transforms, for the carbonate reservoir from the M field. The average relative error for the estimated FZI values is approximately 52%. The same transforms are used as input for training a developed general regression neural network (GRNN), built for the purpose of predicting rock FZI. The constructed GRNN predicts FZI with a notable precision. The average absolute relative error on FZI for the training set is approximately 3.1%. The average absolute relative error on FZI for the blind testing set is approximately 22.0 %. The data mining approach presented in this study appears to suggest that (i) the relationship between the flow zone indicator and open-hole log attributes is highly non-linear, (ii) the FZI is highly affected by parameters that reflect rock texture, rock micro-structure geometry, and diagenetic alterations, and (iii) the derived transforms provide a means for further enhancement of the flow zone indicator prediction in carbonate reservoirs.


2021 ◽  
Vol 18 (38) ◽  
pp. 188-213
Author(s):  
Victor L. MALYSHEV ◽  
Yana F. NURGALIEVA ◽  
Elena F. MOISEEVA

Introduction: Today, there are four main groups of methods for calculating the compressibility factor of natural gas: experimental measurements, equations of state, empirical correlations, modern methods based on genetic algorithms, neural networks, atomistic modeling (Monte Carlo method and molecular dynamics). A correctly chosen method can improve the accuracy of calculating gas reserves and predicting its production and processing. Aim: To find the optimal methods for calculating the z-factor following the characteristic thermobaric conditions. Methods: To determine the best method for calculating the compressibility factor, the effectiveness of using various empirical correlations and equations of state to predict the compressibility factor of hydrocarbon systems (reservoir gases and separation gases) of various compositions were evaluated by comparing numerical results with experimental data. Results and Discussion: Based on 824 experimental values of the compressibility factor for 235 various gas mixtures in the pressure range from 0.1 to 94 MPa and temperatures from 273 to 437 K, the optimal equation of state and empirical correlation dependence for accurate z-factor prediction was found. It is shown that for all gas mixtures the Peng-Robinson equation of state with the shift parameter and Brusilovsky equation of state allow achieving best results. For these methods, the average absolute relative error does not exceed 2%. Among the correlation dependences, the best results are shown by the Sanjari and Nemati Lay; Heidaryan, Moghadasi and Rahimi correlations with an error not exceeding 3%. Conclusions: It was found that for the proposed methods, the reduced pressure has a more significant effect on the accuracy of the calculated values than the reduced temperature. It is shown that when studying acid gas mixtures with a carbon dioxide content of more than 10%, the equations of state better describe the phase behavior of the system in comparison with empirical correlations.


2021 ◽  
Vol 11 (12) ◽  
pp. 5383
Author(s):  
Huachen Gao ◽  
Xiaoyu Liu ◽  
Meixia Qu ◽  
Shijie Huang

In recent studies, self-supervised learning methods have been explored for monocular depth estimation. They minimize the reconstruction loss of images instead of depth information as a supervised signal. However, existing methods usually assume that the corresponding points in different views should have the same color, which leads to unreliable unsupervised signals and ultimately damages the reconstruction loss during the training. Meanwhile, in the low texture region, it is unable to predict the disparity value of pixels correctly because of the small number of extracted features. To solve the above issues, we propose a network—PDANet—that integrates perceptual consistency and data augmentation consistency, which are more reliable unsupervised signals, into a regular unsupervised depth estimation model. Specifically, we apply a reliable data augmentation mechanism to minimize the loss of the disparity map generated by the original image and the augmented image, respectively, which will enhance the robustness of the image in the prediction of color fluctuation. At the same time, we aggregate the features of different layers extracted by a pre-trained VGG16 network to explore the higher-level perceptual differences between the input image and the generated one. Ablation studies demonstrate the effectiveness of each components, and PDANet shows high-quality depth estimation results on the KITTI benchmark, which optimizes the state-of-the-art method from 0.114 to 0.084, measured by absolute relative error for depth estimation.


2021 ◽  
Vol 38 (1−2) ◽  
Author(s):  
Sharath BN ◽  
Venkatesh C V

The present research has been conducted to study the impact of boron carbide (B4C), aluminium oxide(Al2O3) and graphite on Aluminium 2219 (Al2219). According to current research, B4C and graphite material be a good substitute for Al2219.Reinforced composites and unreinforced Al2219 prepared by a stir casting process. A scanning electron microscope was used to analyze the reinforcement and distribution in the matrix and worn surface of the specimen. Exceptional wear resistance (30%) exhibited by  B4C and graphite-reinforced hybrid composite at 150 ºC in contrast with the unreinforced Al2219. The B4C and Gr reinforcement particulate existence improves the strengthening kinetics in the matrix phase at 150 °C. The artificial neural network used to get the test significance, normalized factor importance and absolute relative error of less than 1%.


Author(s):  
Prashant Birbal ◽  
Hazi Azamathulla ◽  
Lee Leon ◽  
Vikram Kumar ◽  
Jerome Hosein

Abstract Modelling the hydrologic processes is an essential tool for the efficient management of water resource systems. Therefore, researchers are consistently developing and improving various predictive/forecasting techniques to accurately represent a river's attributes, even though traditional methods are available. This paper presents the Gene-Expression Programming (GEP) modelling technique to accurately model the stage-discharge relationship for the Arouca River in Trinidad and Tobago using only low flow data. The proposed method uses the stage and associated discharge measurements at one cross-section of the Arouca River. These measurements were used to train the GEP model. The results of the GEP model were also compared to the traditional method of the Stage-Discharge Rating Curve (SRC). Four statistical paraments namely the Pearson's Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Absolute Relative Error (MARE) and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the GEP model and the SRC method. Overall, the GEP model performed exceptionally well with an R2 of 0.990, RMSE of 0.104, MARE of 0.076 and NSE of 0.957.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 349
Author(s):  
Huatian Tu ◽  
Yuxiang Zheng ◽  
Yao Shan ◽  
Yao Chen ◽  
Haotian Zhang ◽  
...  

We proposed a method to study the effects of azimuth and the incident angle on the accuracy and stability of rotating polarizer analyzer ellipsometer (RPAE) with bulk Au. The dielectric function was obtained at various incident angles in a range of 55°–80° and analyzed with the spectrum of the principal angle. The initial orientations of rotating polarizing elements were deviated by a series of angles to act as the azimuthal errors in various modes. The spectroscopic measurements were performed in a wavelength range of 300–800 nm with an interval of 10 nm. The repeatedly-measured ellipsometric parameters and determined dielectric constants were recorded monochromatically at wavelengths of 350, 550, and 750 nm. The mean absolute relative error was employed to evaluate quantitatively the performance of instrument. Apart from the RPAE, the experimental error analysis implemented in this work is also applicable to other rotating element ellipsometers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ali S. Alshomrani ◽  
Malik Z. Ullah ◽  
Dumitru Baleanu

AbstractEveryone is talking about coronavirus from the last couple of months due to its exponential spread throughout the globe. Lives have become paralyzed, and as many as 180 countries have been so far affected with 928,287 (14 September 2020) deaths within a couple of months. Ironically, 29,185,779 are still active cases. Having seen such a drastic situation, a relatively simple epidemiological SIR model with Caputo derivative is suggested unlike more sophisticated models being proposed nowadays in the current literature. The major aim of the present research study is to look for possibilities and extents to which the SIR model fits the real data for the cases chosen from 1 April to 15 March 2020, Pakistan. To further analyze qualitative behavior of the Caputo SIR model, uniqueness conditions under the Banach contraction principle are discussed and stability analysis with basic reproduction number is investigated using Ulam–Hyers and its generalized version. The best parameters have been obtained via the nonlinear least-squares curve fitting technique. The infectious compartment of the Caputo SIR model fits the real data better than the classical version of the SIR model (Brauer et al. in Mathematical Models in Epidemiology 2019). Average absolute relative error under the Caputo operator is about 48% smaller than the one obtained in the classical case ($\nu =1$ ν = 1 ). Time series and 3D contour plots offer social distancing to be the most effective measure to control the epidemic.


Sign in / Sign up

Export Citation Format

Share Document