Link-based Autonomous Cell Scheduling for IEEE 802.15.4e TSCH with Improved Traffic Throughput

2021 ◽  
pp. 1-1
Author(s):  
Hee-Jun Lee ◽  
Sang-Hwa Chung
2012 ◽  
Vol 38 (6) ◽  
pp. 969 ◽  
Author(s):  
Dong-Ni LI ◽  
Guang-Xue XIAO ◽  
Yan WANG ◽  
Jia-Fu TANG
Keyword(s):  

2017 ◽  
Vol 66 (2) ◽  
pp. 1573-1588 ◽  
Author(s):  
Domenico De Guglielmo ◽  
Beshr Al Nahas ◽  
Simon Duquennoy ◽  
Thiemo Voigt ◽  
Giuseppe Anastasi

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1593
Author(s):  
Ismael Amezcua Valdovinos ◽  
Patricia Elizabeth Figueroa Millán ◽  
Jesús Arturo Pérez-Díaz ◽  
Cesar Vargas-Rosales

The Industrial Internet of Things (IIoT) is considered a key enabler for Industry 4.0. Modern wireless industrial protocols such as the IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) deliver high reliability to fulfill the requirements in IIoT by following strict schedules computed in a Scheduling Function (SF) to avoid collisions and to provide determinism. The standard does not define how such schedules are built. The SF plays an essential role in 6TiSCH networks since it dictates when and where the nodes are communicating according to the application requirements, thus directly influencing the reliability of the network. Moreover, typical industrial environments consist of heavy machinery and complementary wireless communication systems that can create interference. Hence, we propose a distributed SF, namely the Channel Ranking Scheduling Function (CRSF), for IIoT networks supporting IPv6 over the IEEE 802.15.4e TSCH mode. CRSF computes the number of cells required for each node using a buffer-based bandwidth allocation mechanism with a Kalman filtering technique to avoid sudden allocation/deallocation of cells. CRSF also ranks channel quality using Exponential Weighted Moving Averages (EWMAs) based on the Received Signal Strength Indicator (RSSI), Background Noise (BN) level measurements, and the Packet Delivery Rate (PDR) metrics to select the best available channel to communicate. We compare the performance of CRSF with Orchestra and the Minimal Scheduling Function (MSF), in scenarios resembling industrial environmental characteristics. Performance is evaluated in terms of PDR, end-to-end latency, Radio Duty Cycle (RDC), and the elapsed time of first packet arrival. Results show that CRSF achieves high PDR and low RDC across all scenarios with periodic and burst traffic patterns at the cost of increased end-to-end latency. Moreover, CRSF delivers the first packet earlier than Orchestra and MSF in all scenarios. We conclude that CRSF is a viable option for IIoT networks with a large number of nodes and interference. The main contributions of our paper are threefold: (i) a bandwidth allocation mechanism that uses Kalman filtering techniques to effectively calculate the number of cells required for a given time, (ii) a channel ranking mechanism that combines metrics such as the PDR, RSSI, and BN to select channels with the best performance, and (iii) a new Key Performance Indicator (KPI) that measures the elapsed time from network formation until the first packet reception at the root.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kwang-il Hwang ◽  
Sung-wook Nam

In order to construct a successful Internet of things (IoT), reliable network construction and maintenance in a sensor domain should be supported. However, IEEE 802.15.4, which is the most representative wireless standard for IoT, still has problems in constructing a large-scale sensor network, such as beacon collision. To overcome some problems in IEEE 802.15.4, the 15.4e task group proposed various different modes of operation. Particularly, the IEEE 802.15.4e deterministic and synchronous multichannel extension (DSME) mode presents a novel scheduling model to solve beacon collision problems. However, the DSME model specified in the 15.4e draft does not present a concrete design model but a conceptual abstract model. Therefore, in this paper we introduce a DSME beacon scheduling model and present a concrete design model. Furthermore, validity and performance of DSME are evaluated through experiments. Based on experiment results, we analyze the problems and limitations of DSME, present solutions step by step, and finally propose an enhanced DSME beacon scheduling model. Through additional experiments, we prove the performance superiority of enhanced DSME.


Author(s):  
Yaoyao Han ◽  
Xiaohui Chen ◽  
Minmin Xu ◽  
Youjun An ◽  
Fengshou Gu ◽  
...  

With the development of Industry 4.0 and requirement of smart factory, cellular manufacturing system (CMS) has been widely concerned in recent years, which may leads to reducing production cost and wip inventory due to its flexibility production with groups. Intercellular transportation consumption, sequence-dependent setup times, and batch issue in CMS are taken into consideration simultaneously in this paper. Afterwards, a multi-objective flexible job-shop cell scheduling problem (FJSCP) optimization model is established to minimize makespan, total energy consumption, and total costs. Additionally, an improved non-dominated sorting genetic algorithm is adopted to solve the problem. Meanwhile, for improving local search ability, hybrid variable neighborhood (HVNS) is adopted in selection, crossover, and mutation operations to further improve algorithm performance. Finally, the validity of proposed algorithm is demonstrated by datasets of benchmark scheduling instances from literature. The statistical result illustrates that improved method has a better or an equivalent performance when compared with some heuristic algorithms with similar types of instances. Besides, it is also compared with one type scalarization method, the proposed algorithm exhibits better performance based on hypervolume analysis under different instances.


Sign in / Sign up

Export Citation Format

Share Document