scholarly journals Multimodal Deep Learning for Heterogeneous GNSS-R Data Fusion and Ocean Wind Speed Retrieval

Author(s):  
Xiaohan Chu ◽  
Jie He ◽  
Hongqing Song ◽  
Yue Qi ◽  
Yueqiang Sun ◽  
...  
2022 ◽  
Vol 269 ◽  
pp. 112801
Author(s):  
Milad Asgarimehr ◽  
Caroline Arnold ◽  
Tobias Weigel ◽  
Chris Ruf ◽  
Jens Wickert

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 21642-21652
Author(s):  
Murtadha D. Hssayeni ◽  
Behnaz Ghoraani

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2013
Author(s):  
Edian F. Franco ◽  
Pratip Rana ◽  
Aline Cruz ◽  
Víctor V. Calderón ◽  
Vasco Azevedo ◽  
...  

A heterogeneous disease such as cancer is activated through multiple pathways and different perturbations. Depending upon the activated pathway(s), the survival of the patients varies significantly and shows different efficacy to various drugs. Therefore, cancer subtype detection using genomics level data is a significant research problem. Subtype detection is often a complex problem, and in most cases, needs multi-omics data fusion to achieve accurate subtyping. Different data fusion and subtyping approaches have been proposed over the years, such as kernel-based fusion, matrix factorization, and deep learning autoencoders. In this paper, we compared the performance of different deep learning autoencoders for cancer subtype detection. We performed cancer subtype detection on four different cancer types from The Cancer Genome Atlas (TCGA) datasets using four autoencoder implementations. We also predicted the optimal number of subtypes in a cancer type using the silhouette score and found that the detected subtypes exhibit significant differences in survival profiles. Furthermore, we compared the effect of feature selection and similarity measures for subtype detection. For further evaluation, we used the Glioblastoma multiforme (GBM) dataset and identified the differentially expressed genes in each of the subtypes. The results obtained are consistent with other genomic studies and can be corroborated with the involved pathways and biological functions. Thus, it shows that the results from the autoencoders, obtained through the interaction of different datatypes of cancer, can be used for the prediction and characterization of patient subgroups and survival profiles.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Ratna Kumari Vemuri ◽  
Pundru Chandra Shaker Reddy ◽  
B S Puneeth Kumar ◽  
Jayavadivel Ravi ◽  
Sudhir Sharma ◽  
...  

Energy ◽  
2021 ◽  
pp. 121808
Author(s):  
Xi Chen ◽  
Ruyi Yu ◽  
Sajid Ullah ◽  
Dianming Wu ◽  
Zhiqiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document