A General Framework for Understanding Compressed Subspace Clustering Algorithms

2018 ◽  
Vol 12 (6) ◽  
pp. 1504-1519 ◽  
Author(s):  
Linghang Meng ◽  
Gen Li ◽  
Jingkai Yan ◽  
Yuantao Gu
Author(s):  
Parul Agarwal ◽  
Shikha Mehta

Subspace clustering approaches cluster high dimensional data in different subspaces. It means grouping the data with different relevant subsets of dimensions. This technique has become very effective as a distance measure becomes ineffective in a high dimensional space. This chapter presents a novel evolutionary approach to a bottom up subspace clustering SUBSPACE_DE which is scalable to high dimensional data. SUBSPACE_DE uses a self-adaptive DBSCAN algorithm to perform clustering in data instances of each attribute and maximal subspaces. Self-adaptive DBSCAN clustering algorithms accept input from differential evolution algorithms. The proposed SUBSPACE_DE algorithm is tested on 14 datasets, both real and synthetic. It is compared with 11 existing subspace clustering algorithms. Evaluation metrics such as F1_Measure and accuracy are used. Performance analysis of the proposed algorithms is considerably better on a success rate ratio ranking in both accuracy and F1_Measure. SUBSPACE_DE also has potential scalability on high dimensional datasets.


Author(s):  
Billy Peralta ◽  
◽  
Luis Alberto Caro

Generic object recognition algorithms usually require complex classificationmodels because of intrinsic difficulties arising from problems such as changes in pose, lighting conditions, or partial occlusions. Decision trees present an inexpensive alternative for classification tasks and offer the advantage of being simple to understand. On the other hand, a common scheme for object recognition is given by the appearances of visual words, also known as the bag-of-words method. Although multiple co-occurrences of visual words are more informative regarding visual classes, a comprehensive evaluation of such combinations is unfeasible because it would result in a combinatorial explosion. In this paper, we propose to obtain the multiple co-occurrences of visual words using a variant of the CLIQUE subspace-clustering algorithm for improving the object recognition performance of simple decision trees. Experiments on standard object datasets show that our method improves the accuracy of the classification of generic objects in comparison to traditional decision tree techniques that are similar, in terms of accuracy, to ensemble techniques. In future we plan to evaluate other variants of decision trees, and apply other subspace-clustering algorithms.


Author(s):  
T. Gayathri ◽  
D. Lalitha Bhaskari

“Big data” as the name suggests is a collection of large and complicated data sets which are usually hard to process with on-hand data management tools or other conventional processing applications. A scalable signature based subspace clustering approach is presented in this article that would avoid identification of redundant clusters. Various distance measures are utilized to perform experiments that validate the performance of the proposed algorithm. Also, for the same purpose of validation, the synthetic data sets that are chosen have different dimensions, and their size will be distributed when opened with Weka. The F1 quality measure and the runtime of these synthetic data sets are computed. The performance of the proposed algorithm is compared with other existing clustering algorithms such as CLIQUE.INSCY and SUNCLU.


2021 ◽  
Vol 15 ◽  
pp. 174830262199962
Author(s):  
Cong-Zhe You ◽  
Zhen-Qiu Shu ◽  
Hong-Hui Fan

Low-Rank Representation (LRR) and Sparse Subspace Clustering (SSC) are considered as the hot topics of subspace clustering algorithms. SSC induces the sparsity through minimizing the l1-norm of the data matrix while LRR promotes a low-rank structure through minimizing the nuclear norm. In this paper, considering the problem of fitting a union of subspace to a collection of data points drawn from one more subspaces and corrupted by noise, we pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise. We propose a new algorithm, named Low-Rank and Sparse Subspace Clustering with a Clean dictionary (LRS2C2), by combining SSC and LRR, as the representation is often both sparse and low-rank. The effectiveness of the proposed algorithm is demonstrated through experiments on motion segmentation and image clustering.


Sign in / Sign up

Export Citation Format

Share Document