Non-invasive measurement of electrically small ultra-wideband and smart antennas

Author(s):  
Tian-Hong Loh
Author(s):  
Kedar Nath Sahu ◽  
Challa Dhanunjaya Naidu ◽  
Jaya Sankar Kottareddygari

There are many applications which require remote and non-invasive measurement of heartbeat of a human being using an ultra-wideband (UWB) radar. Sophisticated models and their analysis need to be referred before the design of a practical radar prototype. In this paper, i) a UWB wave propagation model of human thorax and ii) the power transmission coefficients estimated from the simulations of the model in the range 1-10 GHz using MATLAB are presented. The study reveals that there is a periodic variation of the transmission coefficients in correlation with the instantaneous physical dimensions of an active heart.


2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2162
Author(s):  
Mohammad Mamouei ◽  
Subhasri Chatterjee ◽  
Meysam Razban ◽  
Meha Qassem ◽  
Panayiotis A. Kyriacou

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs. They also do not permit continuous and non-invasive monitoring of dermal water content, which can be beneficial for various consumer, clinical, and cosmetic purposes. We report here on the design and development of a digital multi-wavelength optical sensor that performs continuous and non-invasive measurement of dermal water content. In silico investigation on porcine skin was carried out using the Monte Carlo modeling strategy to evaluate the feasibility and characterize the sensor. Subsequently, an in vitro experiment was carried out to evaluate the performance of the sensor and benchmark its accuracy against a high-end, broad band spectrophotometer. Reference measurements were made against gravimetric analysis. The results demonstrate that the developed sensor can deliver accurate, continuous, and non-invasive measurement of skin hydration through measurement of dermal water content. Remarkably, the novel design of the sensor exceeded the performance of the high-end spectrophotometer due to the important denoising effects of temporal averaging. The authors believe, in addition to wellbeing and skin health monitoring, the designed sensor can particularly facilitate disease management in patients presenting diabetes mellitus, hypothyroidism, malnutrition, and atopic dermatitis.


Author(s):  
Konstantinos Markakis ◽  
Nikolaos Pagonas ◽  
Eleni Georgianou ◽  
Panagiota Zgoura ◽  
Benjamin J. Rohn ◽  
...  

2021 ◽  
Vol 21 (9) ◽  
pp. 10703-10710
Author(s):  
Weijuan Chen ◽  
Yi Zhang ◽  
Huicheng Yang ◽  
Yishen Qiu ◽  
Hui Li ◽  
...  

1987 ◽  
Vol 138 (1) ◽  
pp. 231-231
Author(s):  
K.K. Sethia ◽  
J.C. Smith

Sign in / Sign up

Export Citation Format

Share Document