A New QDI Asynchronous Pipeline with Two-Phase Delay-Insensitive Global Communication

Author(s):  
Duarte L. Oliveira ◽  
Gabriel C. Duarte ◽  
Gracieth C. Batista
Author(s):  
Duarte L. Oliveira ◽  
Nicolly N. M. Cardoso ◽  
Marcelo S. Pinho ◽  
Gracieth C. Batista

2020 ◽  
Vol 7 (3) ◽  
Author(s):  
Liliya Petrova ◽  
Tatyana Gavrilova

The advancing requirements for strength, relaxation, thermophysical, electrical, and other structural elements characteristics actualizes the polymer composite material use for the soft part and node point manufacture, which improves performance index. This paper reported the need to take into account relaxation phenomena in predicting the body’s thermal field development that is made of polymeric materials, and the thermal relaxation time and the thermal damping time proportional to the duration of transient thermal process certain periods. In this article three-period thermal process in a cylindrical body mathematical model is presented. cylindrical body made of a low-heat-conducting material by using a heat conduction hyperbolic equation that is reflecting the heat flow relaxation and thermal damping phenomenon. A numerical solution to the problem of unsteady heat conduction in a circular disk for a two-phase delay equation is presented, which is based on the grid method implementation by using a three-layer implicit difference scheme and the finite difference method use. Calculation formulas for the run-through coefficients as well as the temperature values at the outer boundaries are concluded using the boundary conditions approximation for the intermediate and upper time layers, taking into account the multi-period of the process. The implementation of the modified run-through method when solving the non-stationary heat conduction problem in a cylindrical body, taking into account the finite heat propagation speed and thermal damping is described. The calculation results for the cylindrical body temperature field are obtained by using the polymethyl methacrylate example upon sudden heating based on a model with a two-phase delay. The results presented in this paper aid in an increase in predicting temperature field accuracy in polymer composite materials in the transient thermal processes study.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document