Compensating for the mutual coupling effect in direction finding based on a new calculation method for mutual impedance

2003 ◽  
Vol 2 ◽  
pp. 26-29 ◽  
Author(s):  
H.T. Hui
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 426 ◽  
Author(s):  
Peng Chen  ◽  
Zhimin Chen ◽  
Xuan Zhang ◽  
Linxi Liu

The imperfect array degrades the direction finding performance. In this paper, we investigate the direction finding problem in uniform linear array (ULA) system with unknown mutual coupling effect between antennas. By exploiting the target sparsity in the spatial domain, the sparse Bayesian learning (SBL)-based model is proposed and converts the direction finding problem into a sparse reconstruction problem. In the sparse-based model, the off-grid errors are introduced by discretizing the direction area into grids. Therefore, an off-grid SBL model with mutual coupling vector is proposed to overcome both the mutual coupling and the off-grid effect. With the distribution assumptions of unknown parameters including the noise variance, the off-grid vector, the received signals and the mutual coupling vector, a novel direction finding method based on SBL with unknown mutual coupling effect named DFSMC is proposed, where an expectation-maximum (EM)-based step is adopted by deriving the estimation expressions for all the unknown parameters theoretically. Simulation results show that the proposed DFSMC method can outperform state-of-the-art direction finding methods significantly in the array system with unknown mutual coupling effect.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Dong ◽  
Ronghua Shi ◽  
Ke Chen ◽  
Qingxia Li ◽  
Wentai Lei

This paper deals with the antenna mutual coupling effect in interferometric aperture synthesis radiometers (IASRs), which degrades the system radiometric performance. First, the conventional mutual impedance (CMI) is adopted to analyze the mutual coupling effect on the performance of IASR and a practical model of the coupled visibilities is developed. Based on the model, an external calibration method is then proposed to compensate for the mutual coupling effect. In this method, the measured visibilities are decoupled through the difference measurement between the original scene and a naturally occurring reference scene. Compared to the previous methods, the proposed method requires no extra additional hardware cost and has easier implementation and, therefore, fits for the large interferometric array radiometers. Experimental results validate the effectiveness of the proposed method.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Hoi Shun Lui ◽  
Hon Tat Hui

A short review of the receiving-mutual-impedance method (RMIM) for mutual coupling compensation in direction finding applications using linear array is conducted. The differences between the conventional-mutual-impedance method (CMIM) and RMIM, as well as the three different determination methods for receiving mutual impedance (RMI), will be discussed in details. As an example, direction finding with better accuracies is used for demonstrating the superiority of mutual coupling compensation using RMIM.


Sign in / Sign up

Export Citation Format

Share Document