scholarly journals Simple and Accurate Two-Dimensional Angle Estimation for a Single Source With Uniform Circular Array

2008 ◽  
Vol 7 ◽  
pp. 78-80 ◽  
Author(s):  
Yuntao Wu ◽  
H.C. So
2005 ◽  
Vol 127 (3) ◽  
pp. 336-344 ◽  
Author(s):  
Shyamal C. Mondal ◽  
Paul D. Wilcox ◽  
Bruce W. Drinkwater

Two-dimensional (2D) phased arrays have the potential to significantly change the way in which engineering components in safety critical industries are inspected. In addition to enabling a three-dimensional (3D) volume of a component to be inspected from a single location, they could also be used in a C-scan configuration. The latter would enable any point in a component to be interrogated over a range of solid angles, allowing more accurate defect characterization and sizing. This paper describes the simulation and evaluation of grid, cross and circular 2D phased array element configurations. The aim of the cross and circle configurations is to increase the effective aperture for a given number of elements. Due to the multitude of possible array element configurations a model, based on Huygens’ principle, has been developed to allow analysis and comparison of candidate array designs. In addition to the element configuration, key issues such as element size, spacing, and frequency are discussed and quantitatively compared using the volume of the 3D point spread function (PSF) as a measurand. The results of this modeling indicate that, for a given number of elements, a circular array performs best and that the element spacing should be less than half a wavelength to avoid grating lobes. A prototype circular array has been built and initial results are presented. These show that a flat bottomed hole, half a wavelength in diameter, can be imaged. Furthermore, it is shown that the volume of the 3D reflection obtained experimentally from the end of the hole compares well with the volume of the 3D PSF predicted for the array at that point.


RSC Advances ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 6169-6176
Author(s):  
Jahee Kim ◽  
Yi Rang Lim ◽  
Yeoheung Yoon ◽  
Wooseok Song ◽  
Bo Keun Park ◽  
...  

Single source precursors for coating and subsequent thermal decomposition processes enable a large-scale, low-cost synthesis of two-dimensional transition metal dichalcogenides (TMDs).


Sensors ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1274 ◽  
Author(s):  
Bing Xue ◽  
Xiaodong Qu ◽  
Guangyou Fang ◽  
Yicai Ji

2002 ◽  
Vol 24 (2) ◽  
pp. 65-80 ◽  
Author(s):  
Chih-Kuang Yeh ◽  
Pai-Chi Li

In quantitative ultrasonic flow measurements, the beam-to-flow angle (i.e., Doppler angle) is an important parameter. An autoregressive (AR) spectral analysis technique in combination with the Doppler spectrum broadening effect was previously proposed to estimate the Doppler angle. Since only a limited number of flow samples are used, real-time two-dimensional Doppler angle estimation is possible. The method was validated for laminar flows with constant velocities. In clinical applications, the flow pulsation needs to be considered. For pulsatile flows, the flow velocity is time-varying and the accuracy of Doppler angle estimation may be affected. In this paper, the AR method using only a limited number of flow samples was applied to Doppler angle estimation of pulsatile flows. The flow samples were properly selected to derive the AR coefficients and then more samples were extrapolated based on the AR model. The proposed method was verified by both simulations and in vitro experiments. A wide range of Doppler angles (from 30° to 78°) and different flow rates were considered. The experimental data for the Doppler angle showed that the AR method using eight flow samples had an average estimation error of 3.50° compared to an average error of 7.08° for the Fast Fourier Transform (FFT) method using 64 flow samples. Results indicated that the AR method not only provided accurate Doppler angle estimates, but also outperformed the conventional FFT method in pulsatile flows. This is because the short data acquisition time is less affected by the temporal velocity changes. It is concluded that real-time two-dimensional estimation of the Doppler angle is possible using the AR method in the presence of pulsatile flows. In addition, Doppler angle estimation with turbulent flows is also discussed. Results show that both the AR and FFT methods are not adequate due to the spectral broadening effects from the turbulence.


Solar Energy ◽  
2018 ◽  
Vol 169 ◽  
pp. 179-186 ◽  
Author(s):  
Ping Fan ◽  
Huabin Lan ◽  
Zhuanghao Zheng ◽  
Chunfeng Lan ◽  
Huanxin Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document