Improved Cross-Polarization Characteristics of Circular Microstrip Antenna Employing Arc-Shaped Defected Ground Structure (DGS)

2009 ◽  
Vol 8 ◽  
pp. 1367-1369 ◽  
Author(s):  
D. Guha ◽  
C. Kumar ◽  
S. Pal
2015 ◽  
Vol 9 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Subhradeep Chakraborty ◽  
Sudipta Chattopadhyay

Defected ground structure (DGS)-integrated arc-cornered rectangular microstrip antenna (RMA) has been investigated to achieve broadband along with high co-polarized to cross-polarized radiation (CP–XP) isolation over principal as well as over skew planes without affecting the dominant mode co-polarized (CP) radiation pattern. The present arc-cornered RMA on circular and rectangular dot-type DGS is thoroughly studied and compared with the conventional rectangular microstrip antenna. In the present paper, a crucial emphasis is given to improve CP–XP isolation in all the skew planes and by employing circular dot-type DGS around 20 dB CP–XP isolation is achieved over whole skew planes as well as in the H-plane with the proposed structure with 20% impedance bandwidth. On the contrary, the CP–XP isolation and impedance bandwidth vary in opposite manner in case of the rectangular dot-type DGS. Around 25 and 10 dB CP–XP isolation with 9 and 22% impedance bandwidth have been obtained with thin and thick rectangular dot-type DGS, respectively. The corners of the patch surface are rounded in such a way to reduce spurious radiations from the sharp corners, which are generally attributed for high XP radiation along the diagonal directions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


Sign in / Sign up

Export Citation Format

Share Document