Frequency-Ratio Reduction of a Low-Profile Dual-Band Dual-Circularly Polarized Patch Antenna Under Triple Resonance

2020 ◽  
Vol 19 (10) ◽  
pp. 1689-1693
Author(s):  
Neng-Wu Liu ◽  
Lei Zhu ◽  
Zhong-Xun Liu ◽  
Zhi-Ya Zhang ◽  
Guang Fu
2015 ◽  
Vol 8 (8) ◽  
pp. 1207-1213 ◽  
Author(s):  
Sachin Kumar ◽  
Binod K. Kanaujia ◽  
Mukesh K. Khandelwal ◽  
A.K. Gautam

A single-feed dual-band circularly polarized stacked microstrip patch antenna with a small-frequency ratio is presented. Two pair of orthogonal slits is cut on the lower circular patch for achieving circular polarization and truncated corner square patch is used as the upper parasitic element. The frequency ratio of the dual-band is 1.03. The 3 dB axial ratio bandwidth is 1.3% for the upper band and 1.1% for the lower band. Proposed structure is fabricated on the FR-4 epoxy substrate and fed by SMA connector. The measured results are in good agreement with the theoretical and simulated results. The antenna shows stable radiation characteristics in both bands of operation.


2018 ◽  
Vol 11 (1) ◽  
pp. 87-93
Author(s):  
Z. Ahmed ◽  
M. M. Ahmed ◽  
M. B. Ihsan ◽  
A. A. Chaudhary ◽  
J. K. Arif

AbstractA novel low profile dual band patch antenna is presented. It consists of a composite right/left-handed transmission line (CRLH TL) unit cell gap coupled with the radiating edge of a rectangular patch antenna. The dual band behavior is achieved by coupling the zeroth order resonance mode of CRLH TL and TM10mode of the patch antenna. It is shown that frequency ratio can be changed by varying the gap between the patch and CRLH TL unit cell. The proposed configuration enables frequency reconfigurability by changing the CRLH TL unit cell using a switch. A prototype of the antenna having frequency ratiof2/f1= 1.08 is designed and fabricated. The proposed antenna shows measuredS11≤ −10 dB bandwidth of 100 and 50 MHz at resonance frequencies off1= 4.84 andf2= 5.22 GHz, respectively. A 2 × 2 dual band CRLH TL coupled patch array is also presented, showing more than 12.7 dBi gain at both resonance frequencies.


Author(s):  
Jian‐Xin Chen ◽  
Xue‐Ying Wang ◽  
Ye‐Xin Huang ◽  
Ling‐Ling Yang ◽  
Shi‐Chang Tang

Sign in / Sign up

Export Citation Format

Share Document