2.5D-surface-operation photonic-crystal III-V on silicon based lasers for photonic integrated circuits and sensing applications

Author(s):  
P. Rojo Romeo ◽  
L. Ferrier ◽  
F. Mandorlo ◽  
X. Letartre ◽  
P. Viktorovitch ◽  
...  
2018 ◽  
Vol 8 (9) ◽  
pp. 1552 ◽  
Author(s):  
Youngsoo Kim ◽  
Young Lee ◽  
Seokhyeon Hong ◽  
Kihwan Moon ◽  
Soon-Hong Kwon

The development of an efficient silicon-based nanolight source is an important step for silicon-based photonic integrated circuits. We propose a high quality factor photonic crystal nanocavity consisting of silicon and silica, which can be used as a silicon-compatible nanolight source. We show that this cavity can effectively confine lights in a low-index silica layer with a high confinement factor of 0.25, in which rare-earth dopants can be embedded as gain materials. The cavity is optimized to have a high quality factor of 15,000 and a mode volume of 0.01 μm3, while the resonance has a wavelength of 1537 nm. We expect that the high confinement factor in the thin silica layer and the high quality factor of the proposed cavity enable the cavity to be a good candidate for silicon-compatible nanolight sources for use in nanolasers or light-emitting diodes in the telecommunication wavelength region.


2013 ◽  
Vol 3 (9) ◽  
pp. 1523 ◽  
Author(s):  
Gunther Roelkens ◽  
Utsav Dave ◽  
Alban Gassenq ◽  
Nannicha Hattasan ◽  
Chen Hu ◽  
...  

2007 ◽  
Vol 990 ◽  
Author(s):  
Khadijeh Bayat ◽  
Mahdi Farrokh Baroughi ◽  
Sujeet K. Chaudhuri ◽  
Safieddin Safavi-Naeini

ABSTRACTIn this paper, low temperature amorphous silicon oxynitride (a-SixOyNz:H) thin film technology is proposed for implementation of CMOS compatible photonic crystal (PC) based optical integrated circuits (OICs). The a-SixOyNz films of different refractive indices were developed by plasma enhanced chemical vapor deposition (PECVD) technique using silane, nitrous oxide, and ammonia as gas phase precursors at 300°C. The films with refractive index between 1.43 − 1.75 were obtained by changing gas flow ratios. Such thin films can be used as cladding and core layers in photonic crystal structure.The bandgap and guiding properties of the a-SixOyNz based PCs were simulated and was shown that the a-SixOyNz:H based PC technology offers larger feature sizes than a conventional silicon based photonic crystals.


Sign in / Sign up

Export Citation Format

Share Document