Ship Detection in Ice-Infested Waters Based on Dual-Polarization SAR Imagery

2011 ◽  
Vol 8 (3) ◽  
pp. 391-395 ◽  
Author(s):  
Camilla Brekke ◽  
Stian Normann Anfinsen
2019 ◽  
Vol 11 (9) ◽  
pp. 1078 ◽  
Author(s):  
Ramona Pelich ◽  
Marco Chini ◽  
Renaud Hostache ◽  
Patrick Matgen ◽  
Carlos Lopez-Martinez ◽  
...  

This research addresses the use of dual-polarimetric descriptors for automatic large-scale ship detection and characterization from synthetic aperture radar (SAR) data. Ship detection is usually performed independently on each polarization channel and the detection results are merged subsequently. In this study, we propose to make use of the complex coherence between the two polarization channels of Sentinel-1 and to perform vessel detection in this domain. Therefore, an automatic algorithm, based on the dual-polarization coherence, and applicable to entire large scale SAR scenes in a timely manner, is developed. Automatic identification system (AIS) data are used for an extensive and also large scale cross-comparison with the SAR-based detections. The comparative assessment allows us to evaluate the added-value of the dual-polarization complex coherence, with respect to SAR intensity images in ship detection, as well as the SAR detection performances depending on a vessel’s size. The proposed methodology is justified statistically and tested on Sentinel-1 data acquired over two different and contrasting, in terms of traffic conditions, areas: the English Channel the and Pacific coastline of Mexico. The results indicate a very high SAR detection rate, i.e., >80%, for vessels larger than 60 m and a decrease of detection rate up to 40 % for smaller size vessels. In addition, the analysis highlights many SAR detections without corresponding AIS positions, indicating the complementarity of SAR with respect to cooperative sources for detecting dark vessels.


2015 ◽  
Vol 58 (8) ◽  
pp. 1-3 ◽  
Author(s):  
Long Ma ◽  
Liang Chen ◽  
XueJing Zhang ◽  
He Chen ◽  
Nouman Qadeer Soomro

Author(s):  
Pasquale Iervolino ◽  
Raffaella Guida ◽  
Parivash Lumsdon ◽  
Jurgen Janoth ◽  
Melanie Clift ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 786 ◽  
Author(s):  
Yang-Lang Chang ◽  
Amare Anagaw ◽  
Lena Chang ◽  
Yi Wang ◽  
Chih-Yu Hsiao ◽  
...  

Synthetic aperture radar (SAR) imagery has been used as a promising data source for monitoring maritime activities, and its application for oil and ship detection has been the focus of many previous research studies. Many object detection methods ranging from traditional to deep learning approaches have been proposed. However, majority of them are computationally intensive and have accuracy problems. The huge volume of the remote sensing data also brings a challenge for real time object detection. To mitigate this problem a high performance computing (HPC) method has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods. In this paper, we propose an enhanced GPU based deep learning method to detect ship from the SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time with relatively competitive detection accuracy, we develop a new architecture with less number of layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and 89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture has a similarly competent detection performance as YOLOv2, but with less computational time on a NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap forward in improving the performance of SAR image ship detection.


2019 ◽  
Vol 11 (5) ◽  
pp. 531 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yingbo Dong ◽  
Sisi Wei

Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method.


2007 ◽  
Author(s):  
Junmin Meng ◽  
Jie Zhang ◽  
Changying Wang ◽  
Jungang Yang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document