Polar Format Imaging Algorithm With Wave-Front Curvature Phase Error Compensation for Airborne DLSLA Three-Dimensional SAR

2014 ◽  
Vol 11 (6) ◽  
pp. 1036-1040 ◽  
Author(s):  
Xueming Peng ◽  
Wen Hong ◽  
Yanping Wang ◽  
Weixian Tan ◽  
Yirong Wu
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Feng ◽  
Shaojing Tang ◽  
Shinan Xu ◽  
Tong Qu ◽  
Daxing Zhao

Digital fringe projection measurement technology has been widely used in computer vision and optical three-dimensional (3D) measurement. Considering the phase error caused by the gamma distortion and nonlinear error, the active gamma precorrection and phase error compensation methods based on the three-frequency with three-phase shifts are designed to reversely solve the initial phase and accurately compensate phase error. On the one hand, the gamma coefficient of the measurement system depends on precoding two groups of fringe sequences with different gamma coefficients to calculate the corresponded proportional coefficient of harmonic component. On the other hand, the phase error compensation method is designed to compensate the phase error and improve the accuracy and speed of phase calculation after gamma correction. Experiments show that the proposed precalibration gamma coefficient method can effectively reduce the sinusoidal error in nearly 80 percent which only needs fewer fringe patterns. Compared with the traditional three-frequency with four-phase shift method, the proposed method not only has higher phase accuracy and better noise resistance but also has good robustness and flexibility, which is not limited to the gamma distortion model.


2011 ◽  
Vol 50 (17) ◽  
pp. 2572 ◽  
Author(s):  
Ying Xu ◽  
Laura Ekstrand ◽  
Junfei Dai ◽  
Song Zhang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


Sign in / Sign up

Export Citation Format

Share Document