Block Kriging With Measurement Errors: A Case Study of the Spatial Prediction of Soil Moisture in the Middle Reaches of Heihe River Basin

2017 ◽  
Vol 14 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang
2014 ◽  
Vol 6 (12) ◽  
pp. 12055-12069 ◽  
Author(s):  
Xiaoning Song ◽  
Jianwei Ma ◽  
Xiaotao Li ◽  
Pei Leng ◽  
Fangcheng Zhou ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 061701 ◽  
Author(s):  
Yongmin Yang ◽  
Hongbo Su ◽  
Renhua Zhang ◽  
Jing Tian ◽  
Siquan Yang

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2016 ◽  
Author(s):  
Yujin Zeng ◽  
Zhenghui Xie ◽  
Yan Yu ◽  
Shuang Liu ◽  
Linying Wang ◽  
...  

Abstract. A scheme describing the process of stream-aquifer interaction was incorporated into the land model CLM4.5 to investigate the effects of stream water conveyance over riparian banks on ecological and hydrological processes. Two groups of simulations for five typical river cross-sections in the middle reaches of the arid zone Heihe River Basin were conducted. The simulated riparian ground water table at a propagation distance of less than 1 km followed the intra-annual flu ctuation of the river water level, and the correlation was excellent (R2 = 0.9) between the river water level and the groundwater table at the distance 60 m from the river. The correlation rapidly decreased as distance increased. In response to the variability of the water table, soil moisture at deep layers also followed the variation of river water level all year, while soil moisture at the surface layer was more sensitive to the river water level in the drought season than in the wet season. With increased soil moisture, the average gross primary productivity and respiration of riparian vegetation within 300 m from the river at a typical section of the river increased by approximately 0.03 mg C m−2 s−1 and 0.02 mg C m −2 s−1, respectively, in the growing season. Consequently, the net ecosystem exchange increased by approximately 0.01 mg C m−2 s−1, and the evapotranspiration increased by approximately 3 mm d−1. Furthermore, the length of the growing season of riparian vegetation also increased by 2–3 months due to the sustaining water recharge from the river.


Sign in / Sign up

Export Citation Format

Share Document