scholarly journals Prediction of Sea Surface Temperature Using Long Short-Term Memory

2017 ◽  
Vol 14 (10) ◽  
pp. 1745-1749 ◽  
Author(s):  
Qin Zhang ◽  
Hui Wang ◽  
Junyu Dong ◽  
Guoqiang Zhong ◽  
Xin Sun
Author(s):  
Rajesh Maddu ◽  
Abhishek Reddy Vanga ◽  
Jashwanth Kumar Sajja ◽  
Ghouse Basha ◽  
Rehana Shaik

Abstract Surface Temperature (ST) is important in terms of surface energy and terrestrial water balances affecting urban ecosystems. In this study, to process the nonlinear changes of climatological variables by leveraging the distinct advantages of Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM), we propose an LSTM-BiLSTM hybrid deep learning model which extracts multi-dimension features of inputs, i.e., backward (future to past) or forward (past to future) to predict ST. This study assessed the climatological variables, i.e., wind speed, wind direction, relative humidity, dew point temperature, and atmospheric pressure impact on ST using five major coastal cities of India: Chennai, Mangalore, Visakhapatnam, Cuddalore, and Cochin. The Recurrent Neural Networks (RNN) and hybrid LSTM-BiLSTM models have effectively predicted ST and outperformed the standalone Artificial Neural Networks (ANN), LSTM, and BiLSTM models. The RNN and LSTM-BiLSTM models have performed better in predicting ST for Mangalore (Nash-Sutcliffe efficiency (NSE)=0.91), followed by Cochin (NSE=0.89), Chennai (NSE=0.88), Cuddalore (NSE=0.88), and Vishakhapatnam (NSE=0.81). The hybrid data-driven modeling framework indicated that coupling the LSTM and BiLSTM models were proven effective in predicting the ST of coastal cities.


2020 ◽  
Vol 12 (21) ◽  
pp. 3654
Author(s):  
Minkyu Kim ◽  
Hyun Yang ◽  
Jonghwa Kim

Recent global warming has been accompanied by high water temperatures (HWTs) in coastal areas of Korea, resulting in huge economic losses in the marine fishery industry due to disease outbreaks in aquaculture. To mitigate these losses, it is necessary to predict such outbreaks to prevent or respond to them as early as possible. In the present study, we propose an HWT prediction method that applies sea surface temperatures (SSTs) and deep-learning technology in a long short-term memory (LSTM) model based on a recurrent neural network (RNN). The LSTM model is used to predict time series data for the target areas, including the coastal area from Goheung to Yeosu, Jeollanam-do, Korea, which has experienced frequent HWT occurrences in recent years. To evaluate the performance of the SST prediction model, we compared and analyzed the results of an existing SST prediction model for the SST data, and additional external meteorological data. The proposed model outperformed the existing model in predicting SSTs and HWTs. Although the performance of the proposed model decreased as the prediction interval increased, it consistently showed better performance than the European Center for Medium-Range Weather Forecast (ECMWF) prediction model. Therefore, the method proposed in this study may be applied to prevent future damage to the aquaculture industry.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document