Enhanced Fusion of Deep Neural Networks for Classification of Benchmark High-Resolution Image Data Sets

2018 ◽  
Vol 15 (9) ◽  
pp. 1451-1455 ◽  
Author(s):  
Grant J. Scott ◽  
Kyle C. Hagan ◽  
Richard A. Marcum ◽  
James Alex Hurt ◽  
Derek T. Anderson ◽  
...  
2008 ◽  
Vol 08 (02) ◽  
pp. 243-263 ◽  
Author(s):  
BENJAMIN A. AHLBORN ◽  
OLIVER KREYLOS ◽  
SOHAIL SHAFII ◽  
BERND HAMANN ◽  
OLIVER G. STAADT

We introduce a system that adds a foveal inset to large-scale projection displays. The effective resolution of the foveal inset projection is higher than the original display resolution, allowing the user to see more details and finer features in large data sets. The foveal inset is generated by projecting a high-resolution image onto a mirror mounted on a panCtilt unit that is controlled by the user with a laser pointer. Our implementation is based on Chromium and supports many OpenGL applications without modifications.We present experimental results using high-resolution image data from medical imaging and aerial photography.


1992 ◽  
Vol 31 (14) ◽  
pp. 2452 ◽  
Author(s):  
G. R. Osche ◽  
K. N. Seeber ◽  
Y. F. Lok ◽  
D. S. Young

Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


2017 ◽  
Vol 1 (2) ◽  
pp. 58-62 ◽  
Author(s):  
Sudra Irawan ◽  
Dwi Ely Kurniawan ◽  
Wenang Anurogo ◽  
Muhammad Zainuddin Lubis

Mangrove mapping is done with remote sensing technology using high-resolution image data. Application and information are then presented in web form. This study aims to map the mangrove distribution in Riau Islands, Indonesia. Based on the analysis, from the research data obtained the total area of mangrove in Riau Islands in 2011 and 2017 amounted to 71,504.83 Ha and 64,218.90 Ha, decreased by 7,285, 93 Ha or decreased by 10.19%. Based on the regency, the largest mangrove area in 2017 is located in Batam City of 22,964.77 Ha, then Karimun Regency (13,659,58 Ha), Lingga Regency (11,881.61 Ha), Regency of Bintan (9,701.49) Ha, Natuna Regency (2,477.16 Ha), Tanjungpinang City (1,847.65 Ha), and Anambas Regency (1,686.61 Ha). The magnitude of the widespread change (widespread reduction) occurring over the years between 2011 and 2017 by district, Natuna Regency experienced the largest reduction of 1,949.69 Ha or around 41.39%, followed by Lingga Regency of 1,947.15 Ha (14.08%), Tanjungpinang Municipality of 284.13 Ha (13.33%), Karimun Regency 1,920.93 Ha (12.33%), Anambas Regency of 195.90 Ha (10.40%), Batam City 1,094.83 Ha (4.55%) and Bintan Regency with 93.29 Ha (0, 95%). Opportunities that the pixels classified on the mangrove image are truly mangrove on the facts in the field.


Sign in / Sign up

Export Citation Format

Share Document