Modified Deep Neural Networks for Dog Breeds Identification
In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.