Rapid Yield Estimation of Microwave Passive Components Using Model-Order Reduction Based Neuro-Transfer Function Models

2021 ◽  
Vol 31 (4) ◽  
pp. 333-336
Author(s):  
Jianan Zhang ◽  
Feng Feng ◽  
Qi-Jun Zhang

It is very important task to study the behavior of the processes occurring in the industry. To attain this task, the knowledge of the transfer function of the system should be there. When working in robust environment, these transfer functions becomes so tedious that it becomes very difficult to obtain these transfer functions and hence affects the study of the behavior of these system. Due to this, the requirement for reduction of these transfer function becomes a necessity to analyze the behavior of foresaid systems and it becomes easy to do the desired modifications in the system i.e addition of any feature, desired changes in the behavior etc., furthermore the thing to be kept in consideration while doing the reduction in transfer function that the behavior viz. peak overshoot, settling time, steady state error of the two systems (reduced and the original system) should be approximately same, so it is prime importance that the applied model order reduction technique should provide a more accurate approximation of original higher order system. The paper presents here the different categories of model order reduction techniques that can be applied to achieve the motto of model order reduction of higher order systems. The techniques presented are categorized into the four different categories to understand them and their merits and demerits and these will help in proper selection of the model order reduction technique to obtain the most accurate reduced order approximation of large scale system.


Author(s):  
Naman Purwar ◽  
Maximilian Meindl ◽  
Wolfgang Polifke

Abstract Model order reduction can play a pivotal role in reducing the cost of repeated computations of large thermoacoustic models required for comprehensive stability analysis and optimization. In this proof-of-concept study, acoustic wave propagation is modeled with a 1D network approach, while acoustic-flame interactions are modeled by a flame transfer function. Three reduction techniques are applied to the acoustic subsystem: firstly modal truncation based on preserving the acoustic eigenmodes, and then two approaches that strive to preserve the input-output transfer behavior of the acoustic subsystem, i.e., truncated balanced realization and iterative rational Krylov algorithm. After reduction, the reduced-order models (ROMs) are coupled with the flame transfer function. Results show that the coupled reduced system from modal truncation accurately captures thermoacoustic cavity modes with weak influence of the flame, but fails for cavity modes strongly influenced by the flame as well as for intrinsic thermoacoustic modes. On the contrary, the coupled ROMs generated with the other two methods accurately predict all types of modes. It is concluded that reduction techniques based on preserving transfer behavior are more suitable for thermoacoustic stability analysis.


2021 ◽  
Author(s):  
Naman Purwar ◽  
Maximilian Meindl ◽  
Wolfgang Polifke

Abstract Model order reduction can play a pivotal role in reducing the cost of repeated computations of large thermoacoustic models required for comprehensive stability analysis and optimization. In this proof-of-concept study, acoustic wave propagation is modeled with a 1D network approach, while acoustic-flame interactions are modeled by a flame transfer function. Three reduction techniques are applied to the acoustic subsystem: firstly modal truncation based on preserving the acoustic eigenmodes, and then two approaches that strive to preserve the input-output transfer behavior of the acoustic subsystem, i.e., truncated balanced realization and iterative rational Krylov algorithm. After reduction, the reduced-order models (ROMs) are coupled with the flame transfer function. Results show that the coupled reduced system from modal truncation accurately captures thermoacoustic cavity modes with weak influence of the flame, but fails for cavity modes strongly influenced by the flame as well as for intrinsic thermoacoustic modes. On the contrary, the coupled ROMs generated with the other two methods accurately predict all types of modes. It is concluded that reduction techniques based on preserving transfer behavior are more suitable for thermoacoustic stability analysis.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document