A Single-Mode Polarization Maintaining Hollow Core Photonic Bandgap Fiber

2016 ◽  
Vol 28 (22) ◽  
pp. 2617-2620 ◽  
Author(s):  
Kan Chen ◽  
Chenge Wang ◽  
Huizhu Hu ◽  
Xiaowu Shu ◽  
Cheng Liu
2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Adel Abdallah

An experiment is proposed to show the feasibility of using hollow-core photonic bandgap fibers (HC-PBF) in the fiber-optic interferometric stethoscopes to generally improve the sensitivity and overcome the problems associated with the electronic stethoscopes. In the experiment, the HC-1550 is used as a measuring arm of an unbalanced Mach-Zehnder interferometer (MZI) and the conventional single-mode optical fiber (SMF) is used as an isolated reference arm. Detection and demodulation of the relative phase shift is performed passively using phase-generated carrier homodyne technique (PGC). The proposed results indicate the significance of using HC-PBFs in the future stethoscopes.


2014 ◽  
Vol 609-610 ◽  
pp. 324-329
Author(s):  
Li Shuang Feng ◽  
Wen Shuai Song ◽  
Xiao Yuan Ren

Since the Appearance of Hollow-Core Photonic Bandgap Fiber (HC-PBF), it was Widely Concerned for its Excellent Characteristics. in Order to Study the Characteristics of the HC-PBF that can be Used in Resonator Fiber Optic Gyros (R-Fogs), the Model Structure of a Polarization-Maintaining HC-PBF was Built and its Performance was Simulated by Using the Finite Element Method (FEM). its Mode Field Distribution and Birefringence Characteristics were Obtained. the Influences of the Air Core and Cladding Structures on the Mode Field Distribution and Birefringence were Simulated and Analyzed Further. the Result Showed that there are both Core Mode and Surface Mode in the Structure we Built. by Adding Scattering Points into the Fiber Core, the Surface Mode can be Significantly Suppressed. by Matching the Size of Core and Air Holes around the Core, a Birefringence up to 8*10-4 were Obtained.


2008 ◽  
Vol 16 (6) ◽  
pp. 4337 ◽  
Author(s):  
M. N. Petrovich ◽  
F. Poletti ◽  
A. van Brakel ◽  
D. J. Richardson

2021 ◽  
Author(s):  
Hassan Arman ◽  
Saeed Olyaee

Abstract A hollow-core photonic bandgap fiber (HC-PBF) with high relative sensitivity and low confinement loss was designed. Some destructive circumstance such as propagation losses and mode interference can disrupt performance of the PBF. By considering optimum size of the hollow-core radius, we were able to improve confinement loss and the relative sensitivity. By optimization of the shape and size of the closest row of air holes to the hollow core, the quality of the mode distribution in the hollow-core was well improved. Simulation results confirm that, at an optimal and reasonable core radius, the relative sensitivity and confinement loss of the proposed gas sensor were improved to 96.5% and 0.11 dB/m, respectively. In addition, in order to better matching of optical power between single mode fiber (SMF) and HC-PBF, we could reduce the destructive effects of optical mode mismatch, by mode interference suppression. Furthermore, by optimization of fiber structural specifications such as air filling fraction and lattice constant, the PBF was changed to a single-mode waveguide. Considering the operation wavelength 1530 nm which is very close to the acetylene gas absorption wavelength, this fiber is appropriate to be a high sensitivity gas sensor to detect absorbing gases in the middle infrared range.


2014 ◽  
Vol 568-570 ◽  
pp. 581-589
Author(s):  
Adel Abdallah ◽  
Chao Zhu Zhang ◽  
Zhi Zhong

Recently, using hollow-core photonic bandgap fiber (HC-PBF) for underwater acoustic sensing has been tested experimentally. Besides its unique characteristics and advantages over conventional single mode fiber (SMF), it provides higher responsivity to acoustic pressure. A robust deep water ray tracing model for multipath acoustic signals propagation and the elastic model of HC-PBF are both required to study the effects of underwater enviroment on the propagating acoustic signal for sensing with HC-PBF hydrophones. The combination of the two models allows studying the frequency response, sensitivity, detection range, and maximum operating depth of the HC-PBF hydrophones. The models analysis and simulations show the considerations that must be taken into account for the design and field operation of the HC-PBF hydrophones. In this paper, a complete package to study, design, optimize, and analyze the simulation results of the interferometric HC-PBF hydrophones is proposed.


Sign in / Sign up

Export Citation Format

Share Document