A proof-of-concept implementation interfacing an object manager with a hierarchical storage system

Author(s):  
R. Grossman ◽  
X. Qin ◽  
D. Lifka
Author(s):  
Phillip K.C. Tse

We have described the contiguous placement in the previous chapter and the statistical strategy to place objects on disks in Chapter IV. In this chapter, we describe the statistical strategy to place them on hierarchical storage systems. The objective of the data placement methods is to minimize the time to access object from the hierarchical storage system. The statistical strategy changes the statistical time to access objects so that the mean access time is optimal. The objective of the frequency based placement method is to differentiate objects according to their access frequencies. The objects that are more frequently accessed are placed in the more convenient locations. The objects that are less frequently accessed are placed in the less convenient locations. We will describe the frequency based placement method in the next section. Afterwards, we will analyze its performance. Last, we summarize this chapter.


1996 ◽  
Vol 14 (1) ◽  
pp. 108-136 ◽  
Author(s):  
John Wilkes ◽  
Richard Golding ◽  
Carl Staelin ◽  
Tim Sullivan

2014 ◽  
Vol 1030-1032 ◽  
pp. 1619-1622
Author(s):  
Bing Xin Zhu ◽  
Jing Tao Li

In large-scale storage system, variety of calculations, transfer, and storage devices both in performance and in characteristics such as reliability, there are physical differences. While operational load data access for storage devices is also not uniform, there is a big difference in space and time. If all the data is stored in the high-performance equipment is unrealistic and unwise. Hierarchical storage concept effectively solves this problem. It is able to monitor the data access loads, and depending on the load and application requirements based on storage resources optimally configure properties [1]. Traditional classification policy is generally against file data, based on frequency of access to files, file IO heat index for classification. This paper embarks from the website user value concept, aiming at the disadvantages of traditional data classification strategy, puts forward the centralized data classification strategy based on user value.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1887 ◽  
Author(s):  
Jaber Abu Qahouq ◽  
Yuan Cao

This paper presents and evaluates a control scheme and a power electronics architecture for a Wirelessly Enabled and Distributed Battery Energy Storage (WEDES) system. It includes several independent battery modules (WEDES-MX modules) that transfer both power and information wirelessly to an On-Board Unit (OBU). Using wirelessly communicated State-Of-Charge (SOC) information from the WEDES-MX modules, the OBU part of the WEDES controller generates control commands and send them back to the WEDES-MX modules in order to control the amount of power/energy drawn from each WEDES-MX module and achieve SOC balancing. The presented controller also allows the WEDES system to maintain operation with a regulated bus voltage even if one or more WEDES-MX modules are removed or fail and under both balanced and unbalanced SOC conditions. The WEDES system with the presented WEDES controller when utilized in Electric Vehicle (EV) application, can allow for fast and safe exchange/swapping of WEDES-MX modules at an exchange station, home, or work and therefore potentially eliminating the range (mileage) anxiety issue that is associated with EVs’ range and the needed recharging time. The main objective of this paper is to present and evaluate the WEDES discharging controller for the WEDES system and present preliminary proof-of-concept scaled-down experimental prototype results.


2021 ◽  
Vol 251 ◽  
pp. 02016
Author(s):  
Lea Morschel ◽  
Krishnaveni Chitrapu ◽  
Vincent Garonne ◽  
Dmitry Litvintsev ◽  
Svenja Meyer ◽  
...  

Given the anticipated increase in the amount of scientific data, it is widely accepted that primarily disk based storage will become prohibitively expensive. Tape based storage, on the other hand, provides a viable and affordable solution for the ever increasing demand for storage space. Coupled with a disk caching layer that temporarily holds a small fraction of the total data volume to allow for low latency access, it turns tape based systems into active archival storage (write once, read many) that imposes additional demands on data flow optimization compared to traditional backup setups (write once, read never). In order to preserve the lifetime of tapes and minimize the inherently higher access latency, different tape usage strategies are being evaluated. As an important disk storage system for scientific data that transparently handles tape access, dCache is making efforts to evaluate its recall optimization potential and is introducing a proof-of-concept, high-level stage request scheduling component within its SRM implementation.


Sign in / Sign up

Export Citation Format

Share Document