An experimental study on redundancy resolution scheme of postural configuration in human arm reaching with an elbow joint kinematic constraint

Author(s):  
Hyosang Moon ◽  
Nina P. Robson ◽  
Reza Langari ◽  
Sungtae Shin
2005 ◽  
Vol 02 (01) ◽  
pp. 105-124 ◽  
Author(s):  
VELJKO POTKONJAK

Handwriting has always been considered an important human task, and accordingly it has attracted the attention of researchers working in biomechanics, physiology, and related fields. There exist a number of studies on this area. This paper considers the human–machine analogy and relates robots with handwriting. The work is two-fold: it improves the knowledge in biomechanics of handwriting, and introduces some new concepts in robot control. The idea is to find the biomechanical principles humans apply when resolving kinematic redundancy, express the principles by means of appropriate mathematical models, and then implement them in robots. This is a step forward in the generation of human-like motion of robots. Two approaches to redundancy resolution are described: (i) "Distributed Positioning" (DP) which is based on a model to represent arm motion in the absence of fatigue, and (ii) the "Robot Fatigue" approach, where robot movements similar to the movements of a human arm under muscle fatigue are generated. Both approaches are applied to a redundant anthropomorphic robot arm performing handwriting. The simulation study includes the issues of legibility and inclination of handwriting. The results demonstrate the suitability and effectiveness of both approaches.


2004 ◽  
Vol 91 (1) ◽  
Author(s):  
Ken Ohta ◽  
Mikhail M. Svinin ◽  
ZhiWei Luo ◽  
Shigeyuki Hosoe ◽  
Rafael Laboissi�re

1995 ◽  
Vol 117 (3) ◽  
pp. 454-459 ◽  
Author(s):  
J. T. Wang

A dynamical formulation based upon the undetermined force method is presented for analyzing redundant robotic manipulators. The equivalence between this dynamical formulation and the general solution of kinematic constraint equations is then obtained through use of a normalized generalized inverse. This leads to a special form of the dynamical equations, called the N-inverse form of the dynamical equations. A class of problems, associated with the optimization of quadratic objective functions, are then studied. We find that the N-inverse form of the dynamical equations is the solution of this class of problems. Examples, including local minimization of joint torques and global minimization of kinetic energy, are presented.


Sign in / Sign up

Export Citation Format

Share Document