Novel hybrid active power filter structure to compensate harmonic currents and reactive power

Author(s):  
Samet Biricik ◽  
Ozgur C. Ozerdem ◽  
Soydan Redif ◽  
Mohammed O. I. Kmail
2011 ◽  
Vol 201-203 ◽  
pp. 1512-1516
Author(s):  
Jing Jie Peng ◽  
Xiao Ping Fan ◽  
Gang Li

A new hybrid active power filter (NHAPF) and its corresponding controlling method are proposed in the paper, which can be applied in high voltage system. The topology structure of NHAPF is given and its compensating principle is described. The corresponding controlling method is a power direct control, which need not the lower pass filter and improve the performance of detecting precision and velocity. Simulating results show that the feasibility and validity of the compensated system. Harmonic currents and reactive power are compensated well.


Author(s):  
Ibrahim Alhamrouni ◽  
F. N. Hanafi ◽  
Mohamed Salem ◽  
Nadia H. A. Rahman ◽  
Awang Jusoh ◽  
...  

Author(s):  
Chau Minh Thuyen

<p>The accuratedetermination of the load harmonic current is one of the important factors, it decides to effect of harmonic filtering and reactive power compensation for Hybrid Active Power Filter. The p-q harmonic detection method has been widely used in determining the harmonic currents of Hybrid Active Power Filter. However, when using this method, the dynamic response of Hybrid Active Power Filter in the transient period will have a large transient time and overshoot whenever the load changes abruptly. Therefore, in this paper an improved p-q harmonic current detection method based on fuzzy logic is proposed, which aims to reduce the overshoot and transient time in transient duration of Hybrid Active Power Filter. In order to compare the dynamic response of conventional and improved p-q harmonic detection methods, simulation results have demonstrated that: the proposed method has a shorter response time, the magnitude of the supply current in the transient time is smaller and the overshoot of the fundamental active and reactive power components is very small. This has a practical significance that contributes to the stability of the Hybrid Active Power Filter system</p>


Author(s):  
Fethi Chouaf ◽  
Salah Saad

In the scope of this work, a new structure of the nine level inverter is proposed using a reduced number of power switches. This inverter is used as a shunt active power filter to compensate harmonic currents and the reactive power. The modeling and simulation of the proposed model were carried out in Matlab/Simulink environment. The simulation results show that the filtering performances were achieved despite the reduction of the switches number. It was found that the current waveform becomes purely sinusoidal with a reduction in the harmonic distortion rate (THD) to 2.68%. This implies good compensation of both harmonics and reactive power with a power factor closer to unity. Reducing the switches number allows reducing the switching losses and lowering the duration of the applied voltage supported by the semiconductors. The proposed topology also allows to get simple structure of the inverter with a reduced cost.


Sign in / Sign up

Export Citation Format

Share Document