Panel: given that hardware verification has been an uphill battle, what is the future of software verification?

Author(s):  
S.K. Shukla ◽  
T. Bultan ◽  
C. Heitmeyer
2013 ◽  
Vol 659 ◽  
pp. 181-185
Author(s):  
Wei Gong ◽  
Jun Wei Jia

Model Checking is a method for verification. The model will be checked until the specification of it is proved or disproved. With the rising complexity of big models, there are non-checkable cases, in which cases the problem can be analyzed by some models, for example, bounded Model Checking means to analyze the model until a defined time or depth. The verification happens automatically. The programs for doing this are called Model Checking Tools or Model Checker. Model Checking are used in both software and hardware verification. It is an inherent part of hardware verification, whereas it is less used in the software verification.


Author(s):  
Alasdair Armstrong ◽  
Brian Campbell ◽  
Ben Simner ◽  
Christopher Pulte ◽  
Peter Sewell

AbstractArchitecture specifications such as Armv8-A and RISC-V are the ultimate foundation for software verification and the correctness criteria for hardware verification. They should define the allowed sequential and relaxed-memory concurrency behaviour of programs, but hitherto there has been no integration of full-scale instruction-set architecture (ISA) semantics with axiomatic concurrency models, either in mathematics or in tools. These ISA semantics can be surprisingly large and intricate, e.g. 100k+ lines for Armv8-A.   In this paper we present a tool, Isla, for computing the allowed behaviours of concurrent litmus tests with respect to full-scale ISA definitions, in Sail, and arbitrary axiomatic relaxed-memory concurrency models, in the Cat language. It is based on a generic symbolic engine for Sail ISA specifications, which should be valuable also for other verification tasks. We equip the tool with a web interface to make it widely accessible, and illustrate and evaluate it for Armv8-A and RISC-V.   By using full-scale and authoritative ISA semantics, this lets one evaluate litmus tests using arbitrary user instructions with high confidence. Moreover, because these ISA specifications give detailed and validated definitions of the sequential aspects of systems functionality, as used by hypervisors and operating systems, e.g. instruction fetch, exceptions, and address translation, our tool provides a basis for developing concurrency semantics for these. We demonstrate this for the Armv8-A instruction-fetch model and self-modifying code examples of Simner et al.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 812 ◽  
Author(s):  
Wisniewski ◽  
Bazydło ◽  
Szcześniak ◽  
Grobelna ◽  
Wojnakowski

The paper proposes a novel design technique of cyber-physical systems (CPSs). The system is specified by a Petri net, and further modelled in a hardware description language (HDL) towards final implementation in a programmable device. Contrary to the traditional design methods, the proposed solution is highly focused on the verification aspects. The system is checked three times before the final implementation in hardware. Initially, the Petri-net based specification is formally verified by the application of the model-checking technique. Secondly, software verification of the modelled system is performed. Finally, the hardware verification of the already implemented system is executed. The proposed method is explained by an example of a direct matrix converter (MC) with transistor commutation and space vector modulation (SVM). The main benefits, as well as the limitations, of the proposed solution are discussed and analysed.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document