Determination of Optimum Design Parameters for Semi Rigid Pavement

Author(s):  
K. I. Pradeep ◽  
Wasantha K. Mampearachchi
1959 ◽  
Vol 81 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Kikuo C. Kochi

Harrison’s equation for the pressure in a gas-lubricated bearing of infinite width is solved for a thrust pad with stepped configuration. Analytic expressions for the pressure and load are developed. Numerical results are presented graphically. The analytic expressions together with the numerical data permit most of those characteristics of the stepped pad of practical interest to be completely determinable. Determination of optimum design parameters is given by a pair of graphs.


2005 ◽  
Vol 128 (2) ◽  
pp. 365-373 ◽  
Author(s):  
Xin-Jun Liu ◽  
Jinsong Wang ◽  
Jongwon Kim

This paper addresses the issue of determining the optimal geometric parameters of a 3-DOF parallel manipulator. One of the advantages of the manipulator is that the moving platform exhibits high tilting capabilities, e.g., as much as ±50deg. The first step of the new optimal methodology proposed in this paper to achieve the optimum design involves developing a design space that includes all possible basic similarity manipulators. The next step deals with the graphical representation of atlases that can illustrate relationships between performance criteria and design parameters. With such atlases, the designer can identify an optimum region with respect to the specification on performances. The region contains the optimum candidates, from which we can select one directly. Finally, the geometric parameters of the manipulator can be reached by comparing the desired workspace and the good-conditioning workspace. The design methodology discussed in this paper has no process to establish the objective function and does not involve any optimization algorithm, which is normally used in traditional optimization. We expect that since each manipulator in the developed design space represents all of its similarity manipulators in terms of performances, this method will guarantee an optimum design result.


2011 ◽  
Vol 52 (9-10) ◽  
pp. 508-513 ◽  
Author(s):  
M. V. Maisuradze ◽  
Yu. G. Eismondt ◽  
Yu. V. Yudin

2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2012 ◽  
Vol 455-456 ◽  
pp. 284-288
Author(s):  
Wei Li Gu ◽  
Jian Xiang Liu

this paper studies the typical irreversible processes such as combustion and heat transfer with temperature difference based on the theory of thermodynamics, analyzes the influencing factors on exergy loss in irreversible processes, on the basis of this analysis, proposes the energy-saving optimization measures on design and operation management of the organic heat transfer material heater, and specially points out that in the design process, objective function can be constructed with the exergy loss as evaluation index to determine the outlet flue gas temperature of furnace and the flue gas temperature, and provides theoretical basis for the determination of design parameters.


1996 ◽  
Author(s):  
Monier B. Botros ◽  
Bashar S. AbdulNour ◽  
Todd E. Smith ◽  
Ming-Chia Lia

Author(s):  
Masao Arakawa ◽  
Hiroshi Yamakawa

Abstract In this study, we summerize the method of fuzzy optimization using fuzzy numbers as design variables. In order to detect flaw in fuzzy calculation, we use LR-fuzzy numbers, which is known as its simplicity in calculation. We also use simple fuzzy numbers’ operations, which was proposed in the previous papers. The proposed method has unique characteristics that we can obtain fuzzy sets in design variables (results of the design) directly from single numerical optimizing process. Which takes a large number of numerical optimizing processes when we try to obtain similar results in the conventional methods. In the numerical examples, we compare the proposed method with several other methods taking imprecision in design parameters into account, and demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document