Optimum Design Parameters of an Automotive Blower Fan Housing Scroll

1996 ◽  
Author(s):  
Monier B. Botros ◽  
Bashar S. AbdulNour ◽  
Todd E. Smith ◽  
Ming-Chia Lia
Author(s):  
Masao Arakawa ◽  
Hiroshi Yamakawa

Abstract In this study, we summerize the method of fuzzy optimization using fuzzy numbers as design variables. In order to detect flaw in fuzzy calculation, we use LR-fuzzy numbers, which is known as its simplicity in calculation. We also use simple fuzzy numbers’ operations, which was proposed in the previous papers. The proposed method has unique characteristics that we can obtain fuzzy sets in design variables (results of the design) directly from single numerical optimizing process. Which takes a large number of numerical optimizing processes when we try to obtain similar results in the conventional methods. In the numerical examples, we compare the proposed method with several other methods taking imprecision in design parameters into account, and demonstrate the effectiveness of the proposed method.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1374-1380
Author(s):  
Jong Yun Jang ◽  
Chong Sun Lee ◽  
Chang Min Suh

The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.


Author(s):  
S. Devaraj ◽  
M. Ramakrishna ◽  
B. Singaravel

Metal Matrix Composite (MMC) has better mechanical properties and it is possible to produce near net shape. Aluminum-based MMC (Al-MMC) has challenges in terms of machinability studies and estimation of its optimum process parameters. Alternative cutting fluid research is a challenging area in machining. To avoid, existing hydrocarbon oil-based cutting fluid, textured inserts embedded with a solid lubricant are one of the alternative solutions. Micro hole textured inserts make a hole on the rake face of the cutting tool inserts. Texture includes various important design parameters namely hole diameter, hole depth and pitch between the holes. These optimum parameters influence the machining process. In this work, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to find the optimum design parameters (hole diameter, hole depth and pitch between holes) during turning of Al- MMC. The objective parameters considered are minimization of surface roughness, power consumption and tool flank wear. The optimum combination of these design parameters is obtained by the higher relative closeness value of the TOPSIS method. The result of the investigation revealed that these design parameters are important to obtain improved machining performance. Also, it is understood that the TOPSIS method has an appropriate procedure to solve multiple objective optimization problems in manufacturing industries.


1959 ◽  
Vol 81 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Kikuo C. Kochi

Harrison’s equation for the pressure in a gas-lubricated bearing of infinite width is solved for a thrust pad with stepped configuration. Analytic expressions for the pressure and load are developed. Numerical results are presented graphically. The analytic expressions together with the numerical data permit most of those characteristics of the stepped pad of practical interest to be completely determinable. Determination of optimum design parameters is given by a pair of graphs.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

Abstract In recent years, supercritical CO2 (sCO2) Brayton cycles have drawn the attention of researchers due to their high cycle efficiencies, compact turbomachinery, and environmental friendliness. For small-scale cycles, radial inflow turbines (RIT) are the prevailing choice and one of the key components. A mean line design procedure for sCO2 RIT is developed and design space exploration conducted for a 100 kW-class turbine for a low-temperature waste-heat utilization sCO2 Brayton cycle. By varying the two design parameters, specific speed and velocity ratio, different turbine configurations are setup and compared numerically by means of computational fluid dynamics (CFD) simulations. Results are analyzed to conclude on optimum design parameters with regard to turbine efficiency and expansion ratio. Specific speeds between 0.2 and 0.5 are recommended for sCO2 RIT with small though flow (3 kg/s). The higher the velocity ratio, the bigger the turbine expansion ratio. Pairs of optimum design parameters that effectuate maximum efficiency are identified, with smaller velocity ratios prevailing for smaller specific speeds. The turbine simulation results for sCO2 are compared to well-established recommendations for the design of RIT from literature, such as the Balje diagram. It is concluded that for the design of sCO2 RITs, the same principles can be used as for those for air turbines. By achieving total-to-static stage and rotor efficiencies of 84% and 86%, respectively, the developed mean line design procedure has proven to be an effective and easily applicable tool for the preliminary design of small-scale sCO2 RIT.


1980 ◽  
Vol 102 (3) ◽  
pp. 481-489 ◽  
Author(s):  
S. S. Rao ◽  
B. D. Gupta

Three types of extreme value distributions are fitted to the maximum daily temperature and solar radiation. It is found that type III distribution for the largest value fits the data most closely. A methodology using the maximum yearly temperature data and extremal distributions is developed for the optimum design of refrigerated warehouses. The use of the concept of return period in the optimum design of thermal systems is also suggested. The interior penalty function method with Davidon-Fletcher-Powella method of unconstrained minimization is used as the optimization technique for solving the problems. A sensitivity analysis is conducted about the optimum design point to find the influence of changes in various design parameters on the cooling load and total cost.


Sign in / Sign up

Export Citation Format

Share Document