Real-Time Fluorescent Observation of DNA-Protein Interaction at the Single-molecule Level

Author(s):  
Hirofumi Kurita ◽  
Ken Torii ◽  
Tatsuya Takata ◽  
Hachiro Yasuda ◽  
Kazunori Takashima ◽  
...  
2005 ◽  
Vol 45 (supplement) ◽  
pp. S113
Author(s):  
H. Yokota ◽  
YW. Han ◽  
Jean-Francois Allemand ◽  
Xueuang Xi ◽  
Vincent Croquette ◽  
...  

2004 ◽  
Vol 44 (supplement) ◽  
pp. S181
Author(s):  
H. Yokota ◽  
Jean-Francois Allemand ◽  
Xuguang Xi ◽  
Vincent Croquette ◽  
David Bensimon

2009 ◽  
Vol 321 (7) ◽  
pp. 655-658
Author(s):  
Hirofumi Kurita ◽  
Hachiro Yasuda ◽  
Kazunori Takashima ◽  
Shinji Katsura ◽  
Akira Mizuno

2016 ◽  
Vol 110 (3) ◽  
pp. 145a
Author(s):  
Erik G. Hedlund ◽  
Sviatlana Shashkova ◽  
Adam J.M. Wollman ◽  
Stefan Hohmann ◽  
Mark C. Leake

Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these limitations, we present here a unified computer program that allows one to model and predict membrane protein dynamics at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments. FluoSim is an interactive real-time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The software, thoroughly validated against experimental data on the canonical neurexin-neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the distribution of thousands of independent molecules in 2D cellular geometries, providing simulated data of protein dynamics and localization directly comparable to actual experiments.


2014 ◽  
Vol 70 (a1) ◽  
pp. C198-C198
Author(s):  
Jianshi Jin ◽  
Tengfei Lian ◽  
Chan Gu ◽  
Yiqin Gao ◽  
Yujie Sun ◽  
...  

In proteins, conformational change impacting their function has been well investigated in the past decades, and was named `allosteric effect'. However, in DNA-protein interaction, the concept of DNA conformational change caused by DNA-protein binding will affect another nearby DNA-binding protein has not been well investigated and understood. Combined with structural biology and Single Molecule Assays, we can now probe and study allosteric propagation through DNA which exists as a fundamental property in DNA-protein interaction, and this allosteric effect through DNA can fine tune gene expression. Therefore, DNA conformational changes should be seriously considered and analyzed for DNA –protein interactions in general.


2014 ◽  
Vol 70 (a1) ◽  
pp. C111-C111
Author(s):  
Jianshi Jin ◽  
Teng-fei Lian ◽  
Xiaoliang Xie ◽  
Xiao-Dong Su

The conformation of nucleosomal DNA is significantly different from that of a canonical B-form double stranded DNA (dsDNA), and is generally regarded to be less flexible and less accessible than free dsDNA due to the tight association of histone cores. Previous studies have demonstrated that the key mechanism involved in nucleosomal DNA-protein interaction is the protein accessibility to the DNA binding site. In this work, we used single molecule assays to measure the stability of two transcriptional factors (glucocorticoid receptor DNA binding domain (GRDBD) and estrogen receptor DNA-binding domain (ERDBD)) bound to their binding sites on different positions of the nucleosomal DNA. Interestingly, the results demonstrated that the nucleosomal DNA-GRDBD binding is not always consistent with the histone shielding effect, but adjusted by additional structural changes. Furthermore, the changes of these DNA-GRDBD interaction profiles were confirmed using molecular modeling and docking approaches based on their crystal structures. Very differently, ERDBD essentially is unable to bind to the nucleosomal DNA anywhere including the unblocked positions. We thus have concluded that the nucleosomal DNA-protein interaction is regulated not only by the histone shielding of the DNA binding sites, but also by the conformational changes of the nucleosomal DNA.


Sign in / Sign up

Export Citation Format

Share Document