nucleosomal dna
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 80)

H-INDEX

53
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Burcu Ozden ◽  
Ramachandran Boopathi ◽  
Ayse Bercin Barlas ◽  
Imtiaz N. Lone ◽  
Jan Bednar ◽  
...  

Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin for stimulating vital cellular processes. Expanding on the recent findings, we aim to unravel the universal binding mode of the famous Sox PTF. Our findings show that the base specific hydrogen bonding (base reading) and the local DNA changes (shape reading) are required for sequence-specific nucleosomal DNA recognition by Sox. Among different nucleosomal positions, base and shape reading can be satisfied at super helical location 2 (SHL2). This indicates that due to distinct histone-DNA interactions, SHL2 acts transparently to Sox binding, where SHL4 permits solely shape reading, and SHL0 (dyad) allows no reading. We also show that at SHL2, Sox binds to its recognition sequence without imposing any major conformational changes, if its consensus DNA sequence is located at the solvent-facing nucleosomal DNA strand. These data explain how Sox have evolved to perfectly adapt for chromatin binding.


2021 ◽  
pp. 1-11
Author(s):  
Tatyana V. Andreeva ◽  
Natalya V. Maluchenko ◽  
Anastasiia L. Sivkina ◽  
Oleg V. Chertkov ◽  
Maria E. Valieva ◽  
...  

Inorganic ions are essential factors stabilizing nucleosome structure; however, many aspects of their effects on DNA transactions in chromatin remain unknown. Here, differential effects of K+ and Na+ on the nucleosome structure, stability, and interactions with protein complex FACT (FAcilitates Chromatin Transcription), poly(ADP-ribose) polymerase 1, and RNA polymerase II were studied using primarily single-particle Förster resonance energy transfer microscopy. The maximal stabilizing effect of K+ on a nucleosome structure was observed at ca. 80–150 mM, and it decreased slightly at 40 mM and considerably at >300 mM. The stabilizing effect of Na+ is noticeably lower than that of K+ and progressively decreases at ion concentrations higher than 40 mM. At 150 mM, Na+ ions support more efficient reorganization of nucleosome structure by poly(ADP-ribose) polymerase 1 and ATP-independent uncoiling of nucleosomal DNA by FACT as compared with K+ ions. In contrast, transcription through a nucleosome is nearly insensitive to K+ or Na+ environment. Taken together, the data indicate that K+ environment is more preserving for chromatin structure during various nucleosome transactions than Na+ environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ko Sato ◽  
Amarjeet Kumar ◽  
Keisuke Hamada ◽  
Chikako Okada ◽  
Asako Oguni ◽  
...  

AbstractDimethylated histone H3 Lys36 (H3K36me2) regulates gene expression, and aberrant H3K36me2 upregulation, resulting from either the overexpression or point mutation of the dimethyltransferase NSD2, is found in various cancers. Here we report the cryo-electron microscopy structure of NSD2 bound to the nucleosome. Nucleosomal DNA is partially unwrapped, facilitating NSD2 access to H3K36. NSD2 interacts with DNA and H2A along with H3. The NSD2 autoinhibitory loop changes its conformation upon nucleosome binding to accommodate H3 in its substrate-binding cleft. Kinetic analysis revealed that two oncogenic mutations, E1099K and T1150A, increase NSD2 catalytic turnover. Molecular dynamics simulations suggested that in both mutants, the autoinhibitory loop adopts an open state that can accommodate H3 more often than the wild-type. We propose that E1099K and T1150A destabilize the interactions that keep the autoinhibitory loop closed, thereby enhancing catalytic turnover. Our analyses guide the development of specific inhibitors of NSD2.


2021 ◽  
Vol 22 (22) ◽  
pp. 12127
Author(s):  
Natalya V. Maluchenko ◽  
Dmitry K. Nilov ◽  
Sergey V. Pushkarev ◽  
Elena Y. Kotova ◽  
Nadezhda S. Gerasimova ◽  
...  

Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in DNA repair, chromatin organization and transcription. During transcription initiation, PARP1 interacts with gene promoters where it binds to nucleosomes, replaces linker histone H1 and participates in gene regulation. However, the mechanisms of PARP1-nucleosome interaction remain unknown. Here, using spFRET microscopy, molecular dynamics and biochemical approaches we identified several different PARP1-nucleosome complexes and two types of PARP1 binding to mononucleosomes: at DNA ends and end-independent. Two or three molecules of PARP1 can bind to a nucleosome depending on the presence of linker DNA and can induce reorganization of the entire nucleosome that is independent of catalytic activity of PARP1. Nucleosome reorganization depends upon binding of PARP1 to nucleosomal DNA, likely near the binding site of linker histone H1. The data suggest that PARP1 can induce the formation of an alternative nucleosome state that is likely involved in gene regulation and DNA repair.


Author(s):  
Katja Apelt ◽  
Hannes Lans ◽  
Orlando D. Schärer ◽  
Martijn S. Luijsterburg

AbstractGlobal genome nucleotide excision repair (GG-NER) eliminates a broad spectrum of DNA lesions from genomic DNA. Genomic DNA is tightly wrapped around histones creating a barrier for DNA repair proteins to access DNA lesions buried in nucleosomal DNA. The DNA-damage sensors XPC and DDB2 recognize DNA lesions in nucleosomal DNA and initiate repair. The emerging view is that a tight interplay between XPC and DDB2 is regulated by post-translational modifications on the damage sensors themselves as well as on chromatin containing DNA lesions. The choreography between XPC and DDB2, their interconnection with post-translational modifications such as ubiquitylation, SUMOylation, methylation, poly(ADP-ribos)ylation, acetylation, and the functional links with chromatin remodelling activities regulate not only the initial recognition of DNA lesions in nucleosomes, but also the downstream recruitment and necessary displacement of GG-NER factors as repair progresses. In this review, we highlight how nucleotide excision repair leaves a mark on chromatin to enable DNA damage detection in nucleosomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunhui Peng ◽  
Shuxiang Li ◽  
Alexey Onufriev ◽  
David Landsman ◽  
Anna R. Panchenko

AbstractLittle is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility.


2021 ◽  
Author(s):  
Shuxiang Li ◽  
Yunhui Peng ◽  
David Landsman ◽  
Anna Panchenko

Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported in both prokaryotes and eukaryotes, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here we investigated the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations (five microsecond long trajectories, 60 microseconds in total), we generated extensive atomic level conformational full nucleosome ensembles. Our results revealed that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, shifting the population equilibrium of sugar-phosphate backbone geometry. These conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microsecond time scale.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hiroaki Kato ◽  
Mitsuhiro Shimizu ◽  
Takeshi Urano

Abstract Background Assessing the nucleosome-forming potential of specific DNA sequences is important for understanding complex chromatin organization. Methods for predicting nucleosome positioning include bioinformatics and biophysical approaches. An advantage of bioinformatics methods, which are based on in vivo nucleosome maps, is the use of natural sequences that may contain previously unknown elements involved in nucleosome positioning in vivo. The accuracy of such prediction attempts reflects the genomic coordinate resolution of the nucleosome maps applied. Nucleosome maps are constructed using micrococcal nuclease digestion followed by high-throughput sequencing (MNase-seq). However, as MNase has a strong preference for A/T-rich sequences, MNase-seq may not be appropriate for this purpose. In addition to MNase-seq-based maps, base pair-resolution chemical maps of in vivo nucleosomes from three different species (budding and fission yeasts, and mice) are currently available. However, these chemical maps have yet to be integrated into publicly available computational methods. Results We developed a Bioconductor package (named nuCpos) to demonstrate the superiority of chemical maps in predicting nucleosome positioning. The accuracy of chemical map-based prediction in rotational settings was higher than that of the previously developed MNase-seq-based approach. With our method, predicted nucleosome occupancy reasonably matched in vivo observations and was not affected by A/T nucleotide frequency. Effects of genetic alterations on nucleosome positioning that had been observed in living yeast cells could also be predicted. nuCpos calculates individual histone binding affinity (HBA) scores for given 147-bp sequences to examine their suitability for nucleosome formation. We also established local HBA as a new parameter to predict nucleosome formation, which was calculated for 13 overlapping nucleosomal DNA subsequences. HBA and local HBA scores for various sequences agreed well with previous in vitro and in vivo studies. Furthermore, our results suggest that nucleosomal subsegments that are disfavored in different rotational settings contribute to the defined positioning of nucleosomes. Conclusions Our results demonstrate that chemical map-based statistical models are beneficial for studying nucleosomal DNA features. Studies employing nuCpos software can enhance understanding of chromatin regulation and the interpretation of genetic alterations and facilitate the design of artificial sequences.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ludovica Vanzan ◽  
Hadrien Soldati ◽  
Victor Ythier ◽  
Santosh Anand ◽  
Simon M. G. Braun ◽  
...  

AbstractBinding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nucleosomal DNA, leading to nucleosome remodelling and enhanced chromatin accessibility. Whether PFs can bind to methylated sites and induce DNA demethylation is largely unknown. Using a highly parallelized approach to investigate PF ability to bind methylated DNA and induce DNA demethylation, we show that the interdependence between DNA methylation and TF binding is more complex than previously thought, even within a select group of TFs displaying pioneering activity; while some PFs do not affect the methylation status of their binding sites, we identified PFs that can protect DNA from methylation and others that can induce DNA demethylation at methylated binding sites. We call the latter super pioneer transcription factors (SPFs), as they are seemingly able to overcome several types of repressive epigenetic marks. Finally, while most SPFs induce TET-dependent active DNA demethylation, SOX2 binding leads to passive demethylation, an activity enhanced by the co-binding of OCT4. This finding suggests that SPFs could interfere with epigenetic memory during DNA replication.


2021 ◽  
pp. 167121
Author(s):  
Stefjord Todolli ◽  
Robert T. Young ◽  
Abigail S. Watkins ◽  
Antonio Bu Sha ◽  
John Yager ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document