Cell adhesion control using microstructured meshes induces self-assembly-mediated organoid formation by human iPS cells

Author(s):  
Kennedy O. Okeyo ◽  
Osamu Kurosawa ◽  
Satoshi Yamazaki ◽  
Hidehiro Oana ◽  
Hidetoshi Kotera ◽  
...  
Author(s):  
Kasai T ◽  
Suga H ◽  
Sakakibara   ◽  
Ozone C ◽  
Matsumoto R ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Mark Workentin ◽  
François Lagugné-Labarthet ◽  
Sidney Legge

In this work we present a clean one-step process for modifying headgroups of self-assembled monolayers (SAMs) on gold using photo-enabled click chemistry. A thiolated, cyclopropenone-caged strained alkyne precursor was first functionalized onto a flat gold substrate through self-assembly. Exposure of the cyclopropenone SAM to UV-A light initiated the efficient photochemical decarbonylation of the cyclopropenone moiety, revealing the strained alkyne capable of undergoing the interfacial strain-promoted alkyne-azide cycloaddition (SPAAC). Irradiated SAMs were derivatized with a series of model azides with varied hydrophobicity to demonstrate the generality of this chemical system for the modification and fine-tuning of the surface chemistry on gold substrates. SAMs were characterized at each step with polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to confirm successful functionalization and reactivity. Furthermore, to showcase the compatibility of this approach with biochemical applications, cyclopropenone SAMs were irradiated and modified with azide-bearing cell adhesion peptides to promote human fibroblast cell adhesion, then imaged by live cell fluorescence microscopy. Thus, the “photoclick” methodology reported here represents an improved, versatile, catalyst-free protocol that allows for a high degree of control over the modification of material surfaces, with applicability in materials science as well as biochemistry.<br>


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53771 ◽  
Author(s):  
Akira Nasu ◽  
Makoto Ikeya ◽  
Takuya Yamamoto ◽  
Akira Watanabe ◽  
Yonghui Jin ◽  
...  

2011 ◽  
Vol 121 (6) ◽  
pp. 2326-2335 ◽  
Author(s):  
Yong-Hee Rhee ◽  
Ji-Yun Ko ◽  
Mi-Yoon Chang ◽  
Sang-Hoon Yi ◽  
Dohoon Kim ◽  
...  

2021 ◽  
Vol 43 (3) ◽  
pp. 2124-2134
Author(s):  
Hyun Soo Lee ◽  
Jeewon Mok ◽  
Choun-Ki Joo

Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.


2009 ◽  
Vol 54 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Chun Cui ◽  
LingJun Rao ◽  
LinZhao Cheng ◽  
Lei Xiao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document