Radio frequency interferences investigation using the airborne L-band full polarimetric radiometer CAROLS

Author(s):  
M. Parde ◽  
M. Zribi ◽  
P. Fanise ◽  
M. Dechambre ◽  
J. Boutin ◽  
...  
Keyword(s):  
2017 ◽  
Vol 6 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Peter Toose ◽  
Alexandre Roy ◽  
Frederick Solheim ◽  
Chris Derksen ◽  
Tom Watts ◽  
...  

Abstract. Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400–1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through  ≈  1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.


2019 ◽  
Vol 8 (3) ◽  
pp. 2155-2158

In this paper a single fed microstrip patch ultra-wideband rectenna for harvesting ambient radio frequency energy is presented. The rectenna comprises of a rectangular shaped radiating patch operating at L band frequencies. The rectifier circuit is placed in the same plane of radiating patch to minimize the overall rectenna profile. The rectenna is modelled and are fabricated on low loss roger dielectric substrate. Measured results shows that the rectenna attains a maximum gain of 5 dB in the operating L band with maximum RF conversion efficiency of 81%. The rectenna designed is appropriate for harvesting wireless RF signals operating in L band.


2016 ◽  
Author(s):  
Peter Toose ◽  
Alexandre Roy ◽  
Frederick Solheim ◽  
Chris Derksen ◽  
Tom Watts ◽  
...  

Abstract. Radio Frequency Interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio astronomy frequency allocation of 1400–1427 MHz, but despite this are still subjected to frequent RFI intrusions. We present a unique surface-based/airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore increase the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm) and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets, while the MAE is 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions, and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document