Energy-Efficient Connected and Automated Vehicles: Real-Time Traffic Prediction-Enabled Co-Optimization of Vehicle Motion and Powertrain Operation

Author(s):  
Yunli Shao ◽  
Zongxuan Sun
Author(s):  
Weiran Yao ◽  
Sean Qian

The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incorporating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from historical data of both traffic and implemented signals timing. The effectiveness of traffic incident management is often limited by the late response time and excessive workload of traffic operators. This paper proposes a novel decision-making framework that learns from both data and domain knowledge to real-time recommend contingency signal plans that accommodate non-recurrent traffic, with the outputs from real-time traffic prediction at least 30 min in advance. Specifically, considering the rare occurrences of engagement of contingency signal plans for incidents, it is proposed to decompose the end-to-end recommendation task into two hierarchical models—real-time traffic prediction and plan association. The connections between the two models are learnt through metric learning, which reinforces partial-order preferences observed from historical signal engagement records. The effectiveness of this approach is demonstrated by testing this framework on the traffic network in Cranberry Township, Pennsylvania, U.S., in 2019. Results show that the recommendation system has a precision score of 96.75% and recall of 87.5% on the testing plan, and makes recommendations an average of 22.5 min lead time ahead of Waze alerts. The results suggest that this framework is capable of giving traffic operators a significant time window to access the conditions and respond appropriately.


2014 ◽  
Vol 15 (3) ◽  
pp. 1310-1322 ◽  
Author(s):  
Francisco C. Pereira ◽  
Constantinos Antoniou ◽  
Joan Aguilar Fargas ◽  
Moshe Ben-Akiva

Author(s):  
Shiying Dong ◽  
Bing Zhao Gao ◽  
Hong Chen ◽  
Yanjun Huang ◽  
Qifang Liu

Abstract This paper presents a fast numerical algorithm for velocity optimization based on the Pontryagin' minimum principle (PMP). Considering the difficulties in the application of the PMP when state constraints exist, the penalty function approach is proposed to convert the state-constrained problem into an unconstrained one. Then this paper proposes an iterative numerical algorithm by using the explicit solution to find the optimal solution. The proposed numerical algorithm is applied to the velocity trajectory optimization for energy-efficient control of connected and automated vehicles (CAVs). Simulation results indicate that the algorithm can generate the optimal inputs in milliseconds, and a significant improvement in computational efficiency compared with traditional methods (a few seconds). Hardware in the Loop test for experimental validation is given to further verify the real-time performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document