Normal-incidence 1.56-/spl mu/m MQW asymmetric Fabry-Perot modulator (AFPM) for passive picocells

Author(s):  
Liu ◽  
Seeds ◽  
Chadha ◽  
Stavrinou ◽  
Parry ◽  
...  
Keyword(s):  
2016 ◽  
Vol 49 (5) ◽  
pp. 1653-1658 ◽  
Author(s):  
Y.-H. Wu ◽  
Y.-Y. Chang ◽  
Y.-W. Tsai ◽  
S.-L. Chang

Detailed considerations of how to construct inclined-incidence hard X-ray resonators are presented. Owing to the symmetry of the crystals used, the Bragg back reflection usually employed in normal-incidence two- and multi-plate resonators to reflect the X-ray beam is often accompanied by unavoidable multiple-beam diffraction, and thus the reflectivity and cavity finesse are quite low. In contrast, crystal-based Fabry–Perot (FP) resonators at inclined incidence utilize multiple-beam diffraction to excite the back reflection inside the resonator to generate FP resonance with high efficiency, while avoiding the incident beam suffering from crystal absorption. The useful characteristics of inclined-incidence resonators are derived from numerical calculations based on the inclined-incidence diffraction geometry and the dynamical theory. Experimental results with Laue inclined incidence are in accordance with the simulation. The sub-millielectronvolt energy resolution and ultra-high efficiency of the transmission spectrum of the proposed resonators are also described.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


2001 ◽  
Vol 7 (S2) ◽  
pp. 148-149
Author(s):  
C.D. Poweleit ◽  
J Menéndez

Oil immersion lenses have been used in optical microscopy for a long time. The light’s wavelength is decreased by the oil’s index of refraction n and this reduces the minimum spot size. Additionally, the oil medium allows a larger collection angle, thereby increasing the numerical aperture. The SIL is based on the same principle, but offers more flexibility because the higher index material is solid. in particular, SILs can be deployed in cryogenic environments. Using a hemispherical glass the spatial resolution is improved by a factor n with respect to the resolution obtained with the microscope’s objective lens alone. The improvement factor is equal to n2 for truncated spheres.As shown in Fig. 1, the hemisphere SIL is in contact with the sample and does not affect the position of the focal plane. The focused rays from the objective strike the lens at normal incidence, so that no refraction takes place.


2000 ◽  
Vol 10 (PR8) ◽  
pp. Pr8-251
Author(s):  
L. Menez ◽  
I. Zaquine ◽  
A. Maruani ◽  
R. Frey
Keyword(s):  

1967 ◽  
Vol 28 (C2) ◽  
pp. C2-230-C2-238
Author(s):  
G. I. KATCHEN ◽  
J. KATZENSTEIN ◽  
L. LOVISETTO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document