Well-aligned hydrothermally synthesized zinc oxide nanorods on p-gan without a seed layer

Author(s):  
Fulvio Caruso ◽  
Mauro Mosca ◽  
Roberto Macaluso ◽  
Claudio Cali ◽  
Eric Feltin
Author(s):  
A. Rayerfrancis ◽  
Bhargav P. Balaji ◽  
N. Ahmed ◽  
C. Balaji

Vertically aligned zinc oxide nanorods were grown on low and high temperature deposited aluminium doped zinc oxide seed layer by hydrothermal method and annealed to improve crystallinity. The morphology of the seed layer and the grown nanorods were studied by field emission scanning electron microscopy characterization technique. The properties of the zinc oxide nanorods were analyzed using laser spectroscopic studies. Resonant Raman spectroscopy reveals the unique increase in the A1(LO) mode of vibration with increase in count. The luminescence property of the nanorods was studied with photoluminescence spectrometer. The vertically aligned zinc oxide nanorods show, the very high band edge emission in the ultraviolet region of the electromagnetic spectrum. DOI: 10.21883/FTP.2017.12.45186.8562


2014 ◽  
Vol 10 (3) ◽  
pp. 565-571 ◽  
Author(s):  
Soaram Kim ◽  
Min Su Kim ◽  
Hyunggil Park ◽  
Giwoong Nam ◽  
Hyunsik Yoon ◽  
...  

2011 ◽  
Vol 15 (6) ◽  
pp. 401-405 ◽  
Author(s):  
S K Lim ◽  
H Q Le ◽  
G K L Goh ◽  
K K Lin ◽  
S B Dolmanan

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 877 ◽  
Author(s):  
Swarup Roy ◽  
Hyun Chan Kim ◽  
Pooja S. Panicker ◽  
Jong-Whan Rhim ◽  
Jaehwan Kim

Here, we report the fabrication and characterization of cellulose nanofiber (CNF)-based nanocomposite films reinforced with zinc oxide nanorods (ZnOs) and grapefruit seed extract (GSE). The CNF is isolated via a combination of chemical and physical methods, and the ZnO is prepared using a simple precipitation method. The ZnO and GSE are used as functional nanofillers to produce a CNF/ZnO/GSE film. Physical (morphology, chemical interactions, optical, mechanical, thermal stability, etc.) and functional (antimicrobial and antioxidant activities) film properties are tested. The incorporation of ZnO and GSE does not impact the crystalline structure, mechanical properties, or thermal stability of the CNF film. Nanocomposite films are highly transparent with improved ultraviolet blocking and vapor barrier properties. Moreover, the films exhibit effective antimicrobial and antioxidant actions. CNF/ZnO/GSE nanocomposite films with better quality and superior functional properties have many possibilities for active food packaging use.


2015 ◽  
Vol 77 ◽  
pp. 101-107 ◽  
Author(s):  
Kyung Ho Kim ◽  
Zhuguang Jin ◽  
Yoshio Abe ◽  
Midori Kawamura

Sign in / Sign up

Export Citation Format

Share Document