Equation-Free System-Level Dynamic Modeling and Analysis in Energy Processing

Author(s):  
Aleksandar M. Stankovic
Author(s):  
Soroosh Hassanpour ◽  
G. R. Heppler

This paper is devoted to the dynamic modeling of micropolar gyroelastic beams and explores some of the modeling and analysis issues related to them. The simplified micropolar beam torsion and bending theories are used to derive the governing dynamic equations of micropolar gyroelastic beams from Hamilton’s principle. Then these equations are solved numerically by utilizing the finite element method and are used to study the spectral and modal behaviour of micropolar gyroelastic beams.


Author(s):  
Ryan Schkoda ◽  
Konstantin Bulgakov ◽  
Kalyan Chakravarthy Addepalli ◽  
Imtiaz Haque

This paper describes the system level, dynamic modeling and simulation strategy being developed at the Wind Turbine Drivetrain Testing Facility (WTDTF) at Clemson University’s Restoration Institute in North Charleston, SC, USA. An extensible framework that allows various workflows has been constructed and used to conduct preliminary analysis of one of the facility’s test benches. The framework dictates that component and subsystem models be developed according to a list of identified needs and modeled in software best suited for the particular task. Models are then integrated according to the desired execution target. This approach allows for compartmentalized model development which is well suited for collaborative work. The framework has been applied to one of the test benches and has allowed researches to begin characterizing its behavior in the time and frequency domain.


Sign in / Sign up

Export Citation Format

Share Document