Game Theoretic Contribution of Demand Response in Real Time Power Provision of Distribution System Operator

Author(s):  
Ehsan Reihani ◽  
Alireza Eshraghi ◽  
Mahdi Motalleb
2014 ◽  
Vol 117 ◽  
pp. 157-166 ◽  
Author(s):  
Alireza Zakariazadeh ◽  
Omid Homaee ◽  
Shahram Jadid ◽  
Pierluigi Siano

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3442
Author(s):  
Fábio Retorta ◽  
João Aguiar ◽  
Igor Rezende ◽  
José Villar ◽  
Bernardo Silva

This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.


2016 ◽  
Vol 53 (6) ◽  
pp. 3-11 ◽  
Author(s):  
I. Oleinikova ◽  
A. Mutule ◽  
A. Obushevs ◽  
N. Antoskovs

Abstract This paper analyses demand side management (DSM) projects and stakeholders’ experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2078 ◽  
Author(s):  
Ayman Esmat ◽  
Julio Usaola ◽  
Mª Moreno

The role of the distribution system operator (DSO) is evolving with the increasing possibilities of demand management and flexibility. Rather than implementing conventional approaches to mitigate network congestions, such as upgrading existing assets, demand flexibility services have been gaining much attention lately as a solution to defer the need for network reinforcements. In this paper, a framework for a decentralized local market that enables flexibility services trading at the distribution level is introduced. This market operates on two timeframes, day-ahead and real-time and it allows the DSO to procure flexibility services which can help in its congestion management process. The contribution of this work lies in considering the uncertainty of demand during the day-ahead period. As a result, we introduce a probabilistic process that supports the DSO in assessing the true need of obtaining flexibility services based on the probability of congestion occurrence in the following day of operation. Besides being able to procure firm flexibility for high probable congestions, a new option is introduced, called the right-to-use option, which enables the DSO to reserve a specific amount of flexibility, to be called upon later if necessary, for congestions that have medium probabilities of taking place. In addition, a real-time market for flexibility trading is presented, which allows the DSO to procure flexibility services for unforeseen congestions with short notice. Also, the effect of the penetration level of flexibility on the DSO’s total cost is discussed and assessed. Finally, a case study is carried out for a real distribution network feeder in Spain to illustrate the impact of the proposed flexibility framework on the DSO’s congestion management process.


Sign in / Sign up

Export Citation Format

Share Document