Single image dehazing with varying atmospheric light intensity

Author(s):  
Sanchayan Santra ◽  
Bhabatosh Chanda
Author(s):  
Yongpeng Pan ◽  
Zhenxue Chen ◽  
Xianming Li ◽  
Weikai He

Due to the haze weather, the outdoor image quality is degraded, which reduces the image contrast, thereby reducing the efficiency of computer vision systems such as target recognition. There are two aspects of the traditional algorithm based on the principle of dark channel to be improved. First, the restored images obviously contain color distortion in the sky region. Second, the white regions in the scene easily affect the atmospheric light estimated. To solve the above problems, this paper proposes a single-image dehazing and image segmentation method via dark channel prior (DCP) and adaptive threshold. The sky region of hazing image is relatively bright, so sky region does not meet the DCP. The sky part is separated by the adaptive threshold, then the scenery and the sky area are dehazed, respectively. In order to avoid the interference caused by white objects to the estimation of atmospheric light, we estimate the value of atmospheric light using the separated area of the sky. The algorithm in this paper makes up for the shortcoming that the algorithm based on the DCP cannot effectively process the hazing image with sky region, avoiding the effect of white objects on estimating atmospheric light. Experimental results show the feasibility and effectiveness of the improved algorithm.


2015 ◽  
Vol 75 (24) ◽  
pp. 17081-17096 ◽  
Author(s):  
Huimin Lu ◽  
Yujie Li ◽  
Shota Nakashima ◽  
Seiichi Serikawa

Author(s):  
Aiping Yang ◽  
Haixin Wang ◽  
Zhong Ji ◽  
Yanwei Pang ◽  
Ling Shao

Recently, deep learning-based single image dehazing method has been a popular approach to tackle dehazing. However, the existing dehazing approaches are performed directly on the original hazy image, which easily results in image blurring and noise amplifying. To address this issue, the paper proposes a DPDP-Net (Dual-Path in Dual-Path network) framework by employing a hierarchical dual path network. Specifically, the first-level dual-path network consists of a Dehazing Network and a Denoising Network, where the Dehazing Network is responsible for haze removal in the structural layer, and the Denoising Network deals with noise in the textural layer, respectively. And the second-level dual-path network lies in the Dehazing Network, which has an AL-Net (Atmospheric Light Network) and a TM-Net (Transmission Map Network), respectively. Concretely, the AL-Net aims to train the non-uniform atmospheric light, while the TM-Net aims to train the transmission map that reflects the visibility of the image. The final dehazing image is obtained by nonlinearly fusing the output of the Denoising Network and the Dehazing Network. Extensive experiments demonstrate that our proposed DPDP-Net achieves competitive performance against the state-of-the-art methods on both synthetic and real-world images.


2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


Sign in / Sign up

Export Citation Format

Share Document