Neural network ensemble for power transformers fault detection

Author(s):  
Drasko Furundzic ◽  
Zeljko Djurovic ◽  
Vladimir Celebic ◽  
Iva Salom
2011 ◽  
Vol 467-469 ◽  
pp. 923-927
Author(s):  
Ai She Shui ◽  
Wei Min Chen ◽  
Li Chuan Liu ◽  
Yong Hong Shui

This paper focuses on the problem of detecting sensor faults in feedback control systems with multistage RBF neural network ensemble-based estimators. The sensor fault detection framework is introduced. The modeling process of the estimator is presented. Fault detection is accomplished by evaluating residuals, which are the differences between the actual values of sensor outputs and the estimated values. The particular feature of the fault detection approach is using the data sequences of multi-sensor readings and controller outputs to establish the bank of estimators and fault-sensitive detectors. A detectability study has also been done with the additive type of sensor faults. The effectiveness of the proposed approach is demonstrated by means of three tank system experiment results.


2020 ◽  
Vol 27 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Aleksandar Radonjić ◽  
Danijela Pjevčević ◽  
Vladislav Maraš

AbstractThis paper investigates the use of neural networks (NNs) for the problem of assigning push boats to barge convoys in inland waterway transportation (IWT). Push boat–barge convoy assignmentsare part of the daily decision-making process done by dispatchers in IWT companiesforwhich a decision support tool does not exist. The aim of this paper is to develop a Neural Network Ensemble (NNE) model that will be able to assist in push boat–barge convoy assignments based on the push boat power.The primary objective of this paper is to derive an NNE model for calculation of push boat Shaft Powers (SHPs) by using less than 100% of the experimental data available. The NNE model is applied to a real-world case of more than one shipping company from the Republic of Serbia, which is encountered on the Danube River. The solution obtained from the NNE model is compared toreal-world full-scale speed/power measurements carried out on Serbian push boats, as well as with the results obtained from the previous NNE model. It is found that the model is highly accurate, with scope for further improvements.


2020 ◽  
Author(s):  
Nithya Subramanian ◽  
Hongmei He ◽  
Ian Jennions

2020 ◽  
Vol 14 (2) ◽  
pp. 205-220
Author(s):  
Yuxiu Jiang ◽  
Xiaohuan Zhao

Background: The working state of electronic accelerator pedal directly affects the safety of vehicles and drivers. Effective fault detection and judgment for the working state of the accelerator pedal can prevent accidents. Methods: Aiming at different working conditions of electronic accelerator pedal, this paper used PNN and BP diagnosis model to detect the state of electronic accelerator pedal according to the principle and characteristics of PNN and BP neural network. The fault diagnosis test experiment of electronic accelerator pedal was carried out to get the data acquisition. Results: After the patents for electronic accelerator pedals are queried and used, the first measured voltage, the upper limit of first voltage, the first voltage lower limit, the second measured voltage, the upper limit of second voltage and the second voltage lower limit are tested to build up the data samples. Then the PNN and BP fault diagnosis models of electronic accelerator pedal are established. Six fault samples are defined through the design of electronic accelerator pedal fault classifier and the fault diagnosis processes are executed to test. Conclusion: The fault diagnosis results were analyzed and the comparisons between the PNN and the BP research results show that BP neural network is an effective method for fault detection of electronic throttle pedal, which is obviously superior to PNN neural network based on the experiment data.


1997 ◽  
Vol 30 (11) ◽  
pp. 561-566 ◽  
Author(s):  
Koji Morinaga ◽  
Michael E. Sugars ◽  
Koji Muteki ◽  
Haruo Takada

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Wirot Yotsawat ◽  
Pakaket Wattuya ◽  
Anongnart Srivihok

2021 ◽  
Vol 71 ◽  
pp. 102029
Author(s):  
Evan Hann ◽  
Iulia A. Popescu ◽  
Qiang Zhang ◽  
Ricardo A. Gonzales ◽  
Ahmet Barutçu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document