scholarly journals High spatial resolution gamma imaging detector based on a 5" diameter R3292 Hamamatsu PSPMT

Author(s):  
R. Wojcik ◽  
S. Majewski ◽  
B. Kross ◽  
D. Steinbach ◽  
A.G. Weisenberger
1998 ◽  
Vol 45 (3) ◽  
pp. 487-491 ◽  
Author(s):  
R. Wojcik ◽  
S. Majewski ◽  
B. Kross ◽  
D. Steinbach ◽  
A.G. Weisenberger

Author(s):  
A. Faenov ◽  
M. Matsubayashi ◽  
T. Pikuz ◽  
Y. Fukuda ◽  
M. Kando ◽  
...  

This paper describes an overview of our recent discovery – clear demonstration that LiF crystals can be efficiently used as a high-performance neutron imaging detector based on optically stimulated luminescence of color centers generated by neutron irradiation. It is shown that the neutron images we have obtained are almost free from granular noise, have a spatial resolution of ${\sim}5.4~{\rm\mu}\text{m}$ and a linear response with a dynamic range of at least $10^{3}$ . The high contrast and good sensitivity of LiF crystals allow us to distinguish two holes with less than 2% transmittance difference. We propose to use such detectors in areas where high spatial resolution with high image gradation resolution is needed, including diagnostics of different plasma sources such as laser and z-pinch produced plasmas.


Author(s):  
K. Przybylski ◽  
A. J. Garratt-Reed ◽  
G. J. Yurek

The addition of so-called “reactive” elements such as yttrium to alloys is known to enhance the protective nature of Cr2O3 or Al2O3 scales. However, the mechanism by which this enhancement is achieved remains unclear. An A.E.M. study has been performed of scales grown at 1000°C for 25 hr. in pure O2 on Co-45%Cr implanted at 70 keV with 2x1016 atoms/cm2 of yttrium. In the unoxidized alloys it was calculated that the maximum concentration of Y was 13.9 wt% at a depth of about 17 nm. SIMS results showed that in the scale the yttrium remained near the outer surface.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Author(s):  
Kosuke Nomura ◽  
Ryutaro Oi ◽  
Takanori Senoh ◽  
Taiichiro Kurita ◽  
Takayuki Hamamoto

Sign in / Sign up

Export Citation Format

Share Document